期刊文献+

基于C-WNNM的地震随机噪声压制方法 被引量:1

Seismic random noise suppression based on C-WNNM method
下载PDF
导出
摘要 针对低信噪比情况下地震信号同相轴不易识别的问题,提出用C-WNNM方法来压制地震勘探资料中的随机噪声.给出了基于WNNM的低秩逼近理论,利用地震信号在时间和空间上具有一定的相似性这一特点来构建近似低秩矩阵,并且由CEEMD分解得到的IMF1分量来近似估计局部噪声方差,从而获得更加精确的权值.经过迭代逼近得到最终去噪后的信号.对由雷克子波生成的模拟地震勘探资料进行C-WNNM滤波处理.结果表明,在地震数据存在强噪声的情况下,该方法能够有效压制随机噪声并且能够更好地保留有效信号,信噪比相比于原始WNNM算法提高了3 d B左右. To solve the reorganization problem of seismic events with low signal to noise ratio,the weighted nuclear norm minimization( C-WNNM) method was proposed to suppress the random noise in seismic data. The low rank approximation theory was presented based on WNNM. The low rank approximate matrices were constructed according to the similar characteristics of seismic signals in time and space domain. The IMF1 component obtained from CEEMD decomposition was used to estimate the local noise variance and lead to more accurate weights. The final denoising signal was obtained by iterative approximation. The C-WNNM method was used to process the simulated seismic exploration data generated by ricker wavelets. The results show that the proposed method can remove random noise effectively and preserve the effective signals well in the presence of strong noise in seismic data. The signal to noise ratio filtered by C-WNNM is promoted by about 3 d B than original WNNM.
作者 王代香 李娟 孟可心 WANG Daixiang LI Juan MENG Kexin(College of Communication Engineering, Jilin University, Changehun, Jilin 130012, China)
出处 《江苏大学学报(自然科学版)》 EI CAS CSCD 北大核心 2017年第2期192-196,共5页 Journal of Jiangsu University:Natural Science Edition
基金 国家自然科学基金资助项目(41574096)
关键词 C-WNNM 最小加权核范数 低秩逼近 信噪比 CEEMD IMF1分量 C-WNNM weighted nuclear norm minimization low rank approximation signal to noise ratio CEEMD IMF1 component
  • 相关文献

参考文献2

二级参考文献17

  • 1Broadhead, M., 2008, The impact of random noise on seismic wavelet estimation: The Leading Edge, 27(2), 226-230.
  • 2Candes, E., and Donoho, D., 2002, New tight frames of curvelets and optimal representations of objects with smooth singularities: Technical Report, Stanford University.
  • 3Deng, C. Z., 2008, Research on image sparse representation theory and its applications: PhD Thesis, Huazhong University of Science and Technology.
  • 4Elad, M., and Aharon, M., 2006, Image denoising via sparse and redundant representations over learned dictionaries: IEEE Trans. Image Process, 15(12), 3736-3745.
  • 5Herrmann, F., and Hennenfent, G., 2008, Non-parametricseismic data recovery with curvelet frames: Geophys. J.Int., 173, 233-248.
  • 6Meyer, F. G., 1999, Fast compression of seismic data with local trigonometric bases, in Aldroubi, A., Laine, A., and Unser, M., Eds., Wavelet VII: Proc. SPIE 3813, 648-658.
  • 7Protter, M., and Elad, M., 2009, Image sequence denoising via sparse and redundant representations: IEEE Trans. Image Process, 18(1), 27-35.
  • 8Shan, H., Ma, J. W., and Yang, H. Z., 2009, Comparisons of wavelets, contourlets and curvelets in seismic denoising: Journal of Applied Geophysics, 69, 103-115.
  • 9Tang, G., and Ma, J. W., 2009, Application of total variation based curvelet shrinkage for three-dimensional seismic data denoising: IEEE Geosci. Remote Sensing Lett.,8(1), 103-107. van den Berg, E., and Friedlander, M., 2008, Probing the Pareto frontier for basis pursuit solutions: SIAM J. Scientifi c Computing, 31(2), 890-912.
  • 10Wang, Y., and Wu, R., 2000, Seismic data compression by an adaptive local cosine/sine transform and its effects on migration: Geophysical Prospecting, 48, 1009-1031.

共引文献121

同被引文献19

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部