期刊文献+

一种新的多分类代价敏感算法 被引量:2

A New Multi-class Cost-sensitive Algorithm
下载PDF
导出
摘要 为了提高代价敏感分类算法MetaCost的准确率,降低错分代价,提出了多类别问题下的一种代价敏感分类算法(简称D-MetaCost算法).该算法利用MetaCost算法,通过多次取样生成多个模型,依据它们的分类准确率,选择其中准确率较高的前几个基分类器,将它们与最后阶段新生成的分类器聚集在一起得到最终分类模型.实验表明,D-MetaCost算法在准确率和代价方面比经典的MetaCost算法有明显的改进和提高. Cost-sensitive classification is an important research topic in the classification problem.In order to improve the accuracy of MetaCost, which serves as a cost-sensitive classification algorithm, and reduce its misclassification cost, we propose a new cost-sensitive algorithm, called D-MetaCost, for multi-class problems.In D-MetaCost algorithm, we can calculate the accuracy of multiple mod- els generated in the beginning of MetaCost algorithm,and select first few base classifiers with higher accuracy, then integrate them together with the new model of the last stage to obtainthe final classification model.Experimental results show that the proposed al- gorithm enjoys obvious improvements in accuracy and cost in comparison with the classical MetaCost algorithm.
作者 邓少军 冯少荣 林子雨 DENG Shaojun FENG Shaorong LIN Ziyu(School of Information Science and Engineering,Xiamen University, Xiamen 361005,China)
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第2期231-236,共6页 Journal of Xiamen University:Natural Science
基金 国家自然科学基金(61303004) 国家社会科学基金重大项目(13ZD148)
关键词 分类代价 代价敏感 集成学习 MetaCost D-MetaCost classification cost cost-sensitive ensemble learning MetaCost D-MetaCost
  • 相关文献

同被引文献15

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部