期刊文献+

基于平面4节点单元的钢筋混凝土梁柱节点单元 被引量:2

Reinforced Concrete Beam-column Joint Element Based on Four-node Plane Element
下载PDF
导出
摘要 基于平面4节点单元,提出了一个受循环荷载作用的钢筋混凝土梁柱节点单元,称之为超自由度单元.超自由度单元在梁与节点交界面和柱与节点交界面被划分成节点截面和梁柱截面,节点的力学性能由平面4节点单元描述,而梁柱受力钢筋与节点核心区的黏结滑移由节点截面和梁柱截面之间的8根弹簧控制.超自由度单元具有4个节点20个自由度,每个节点具有5个自由度,其中3个自由度与普通梁单元一致,从而确保其适合于同普通一维梁柱单元一起进行钢筋混凝土平面结构的非线性分析.通过3个梁柱组合体的实验和计算结果对比,验证了超自由度单元适合于进行循环荷载作用下平面框架结构的非线性响应分析. Based on four-node plane stress elements,a new element, named super degree-of-freedom element,is developed to represent the response of reinforced concrete beam-column joints under reserved cyclic loading. Element edges are divided into "joint plane" and "beam-column plane" at the joint-column interface and joint-beam interface.The inelastic mechanism of joint core is represented by the four-node plane stress element. Anchorage failures of beam and column longitudinal reinforcement embedded in the joint are determined by eight springs between "joint plane" and "beam-column plane".The model is implemented as a four-node twenty-degree-of-freedom element.There are five degrees of freedom on each node.Three of them coincide with ones of typical beam element so that the element is appropriate for use with typical hysteretic beam-column line elements in two-dimensional nonlinear analyses of reinforced concrete structures. Comparison of simulated and observed responses for three sub-assemblages tested in the laboratory indicates that the proposed element is appropriate for use in simulating responses of building joints under cyclic loading.
作者 方自虎 周尧 FANG Zihu ZHOU Yao(College of Civil Engineering, Shenzhen University, Shenzhen 518060, China)
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第2期287-293,共7页 Journal of Xiamen University:Natural Science
基金 国家自然科学基金(51378313 51578336)
关键词 梁柱节点单元 钢筋混凝土 框架结构 循环荷载 非线性分析 beam-column joint element reinforced concrete frame structures reversed cyclic loading non-linear analysis
  • 相关文献

参考文献1

二级参考文献16

  • 1Vecchio F J, Collins M P. The modified compression field theory for reinforced concrete elements subjected to shear[J]. ACI Structural Journal, 1986, 83(2): 219-231.
  • 2Ayoub A, Filippou F C. Nonlinear finite element analysis of RC shear panels and walls[J]. Journal of Structure Engineering, ASCE, 1998, 124(3): 298-308.
  • 3Zhang, J. Model-based simulation of reinforced concrete plane stress structures[D]. Ph. D., thesis, University of Houston, 2005.
  • 4Vecchio F J. Reinforced concrete membrane element formulations[J]. Journal of Structure Engineering, ASCE, 1990, 116(3): 730-750.
  • 5Vecchio F J. Finite element modeling of concrete expansion and confinement[J]. Journal of Structure Engineering, ASCE, 1992, 118(9): 2390-2406.
  • 6Vecchio F J. Compression response of cracked reinforced concrete[J]. Journal of Structure Engineering, ASCE, 1993, 119(12): 3590-3610.
  • 7Popovics S. A numerical approach to the complete stress strain curve of concrete[J]. Cement and Concrete Research, 1973, 3(5): 583-599.
  • 8Scott B D, Park R, Priestley M J N. Stress strain behavior of concrete confined by overlapping hoops at low and high strain rates[J]. ACI Structural Journal, 1982, 79(1): 13-27.
  • 9方自虎, 周海俊, 赖少颖, 等. ABAQUS混凝土损伤参数的计算方法[J]. 建筑结构(增刊), 2014,44(S1): 719-721.
  • 10Filippou F C, Popov E P, Bertero V V. Effects of bond deterioration on hysteretic behavior of reinforced concrete joints[R]. 1983, University of California.

共引文献7

同被引文献10

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部