期刊文献+

一种针对短文本的主题情感混合模型 被引量:4

A Joint Topic and Sentiment Model for Short Texts
下载PDF
导出
摘要 主题情感混合模型可以同时提取语料的主题信息和情感倾向。针对短文本特征稀疏的问题,主题情感联合分析方法较少的问题,该文提出了BJSTM模型(Biterm Joint Sentiment Topic Model),在BTM模型(Biterm Topic Model)的基础上,增加情感层的设置,从而形成"情感-主题-词汇"的三层贝叶斯模型。对每个双词的情感和主题进行采样,从而对整个语料的词共现关系建模,一定程度上克服了短文本的稀疏性。实验表明,BJSTM模型在无监督情感分类和主题提取方面都有不错的表现。 The joint topic and sentiment model is aimed at efficiently detecting topics and emotions [or the given cor- pus. Faced with the sparsity of short texts and the lack of sentiment/topic analysis methods, this paper proposes a novel way called Biterm Joint Sentiment Topic Model (BJSTM). A sentiment layer is added to Biterm Topic Model, thus a three-layer Bayesian model of "sentiment-topic-term" is formed. By sampling the sentiment and topic of each biterm, BJSTM could depict the word co-occurrence of the whole corpus and overcome the sparsity of short texts to some extent. The experimental results show that BJSTM gets better performance in sentiment classification as well as topic extraction.
出处 《中文信息学报》 CSCD 北大核心 2017年第1期162-168,共7页 Journal of Chinese Information Processing
基金 山西省回国留学人员科研资助项目(2015-045 2013-033) 山西省留学回国人员科技活动择优资助项目(2013年度) 山西省自然科学基金(2014011018-2)
关键词 主题情感混合模型 情感分类 BTM the topic and sentiment unification model sentiment classification BTM
  • 相关文献

参考文献2

二级参考文献43

  • 1朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 2苏金树,张博锋,徐昕.基于机器学习的文本分类技术研究进展[J].软件学报,2006,17(9):1848-1859. 被引量:387
  • 3徐军,丁宇新,王晓龙.使用机器学习方法进行新闻的情感自动分类[J].中文信息学报,2007,21(6):95-100. 被引量:107
  • 4Fang L, Huang M L, Zhu X Y. Exploring weakly supervised latent sentiment explanations for aspect-level review analysis. In:Proceedings of the 22nd ACM International Conference on Conference on Information & Knowledge Management. New York, NY, USA:ACM, 2013.1057-1066.
  • 5赵妍妍, 秦兵, 刘挺. 基于图的篇章内外特征相融合的评价句极性识别. 自动化学报, 2010, 36(10):1417-1425.
  • 6Liu B. Sentiment Analysis and Opinion Mining. San Rafael, CA:Morgan Claypool Publishers, 2012.
  • 7Pang B, Lee L. Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval, 2008, 2(1-2):1-135.
  • 8Jo Y, Oh A H. Aspect and sentiment unification model for online review analysis. In:Proceedings of the 4th ACM International Conference on Web Search and Data Mining. New York, NY, USA:ACM, 2011.815-824.
  • 9He Y L, Lin C H, Alani H. Automatically extracting polarity-bearing topics for cross-domain sentiment classification. In:Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:Human Language Technologies——Volume 1. Stroudsburg, PA, USA:Association for Computational Linguistics, 2011.123-131.
  • 10Lin C H, He Y L. Joint sentiment/topic model for sentiment analysis. In:Proceedings of the 18th ACM Conference on Information and Knowledge Management. New York, NY, USA:ACM, 2009.375-384.

共引文献64

同被引文献53

引证文献4

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部