期刊文献+

基于双背景建模与差分图像的轨道异物识别 被引量:5

Recognition of Foreign Object Intrusion for Railway Track on Double Background Modeling and Difference Image
下载PDF
导出
摘要 针对铁路轨道异物入侵的识别精度,提出了一种基于双背景建模和差分图像的识别方法.基于多帧平均背景和当前帧的前一帧背景建立模型,采用背景逐帧更新,使用平均背景差分和帧间差分的异物检测方法,界定基于边缘提取的铁轨危险区域,再通过黑白像素方法对轨道异物进行识别.实验表明,该方法具有较好的抑噪性和环境适应性,可有效提高异物识别精度. In order to improve the accuracy of foreign object recognition on railway track,the foreign object recognition method on railway track is put forward based on double background modeling and difference image.In this method,the double background modeling method that includes the multi-frame average background modeling and the previous frame of current frame background modeling method are used to model the background model,and two backgrounds are updated respectively to achieve background updating by using the newest image.The foreign object detection method is done by fusing the background difference and interframe difference,and the hazardous area of railway track is divided based on edge extraction,then the track foreign object has been discerned through the recognition method of the black and white pixels.The simulink results show that this method has better noise immunity performance and environmental adaptability,and the precision of foreign object recognition is improved effectively.
作者 侯涛 李丹丹
出处 《兰州交通大学学报》 CAS 2017年第1期47-50,共4页 Journal of Lanzhou Jiaotong University
基金 甘肃省自然科学基金(1606RJZA002) 兰州交通大学科技支撑计划项目(ZC2013004)
关键词 铁路轨道 双背景建模 背景差分 帧间差分 异物识别 railway track double background modeling background difference interframe difference foreign object recognition
  • 相关文献

参考文献8

二级参考文献59

  • 1朱正平,王秀丽,岳秋菊.基于机器视觉的轨道异物侵限检测方法研究[J].甘肃高师学报,2009,14(2):22-24. 被引量:4
  • 2Zha Yufei Bi Duyan.Adaptive learning algorithm based on mixture Gaussian background[J].Journal of Systems Engineering and Electronics,2007,18(2):369-376. 被引量:9
  • 3李刚,曾锐利,林凌,王蒙军.基于帧间颜色梯度的背景建模[J].光学精密工程,2007,15(8):1257-1262. 被引量:7
  • 4李牧,闫继红,李戈,赵杰.自适应Canny算子边缘检测技术[J].哈尔滨工程大学学报,2007,28(9):1002-1007. 被引量:88
  • 5DECARLO D, METAXAS D. Optical flow constraints on de?formable models with applications to face tracking[J]' Interna- tiona[Journal of Computer Vision,2000,3S:99-127.
  • 6DAILEY DJ, CATHEY F W, PUMRIN S. An algorithm to estimate mean traffic speed using uncalibrated cameras[J]. IEEE Transactions on Intelligent Transportation Systems, 2000,1(2):98-107.
  • 7GONZALEZ R C, WOODS R E. Digital image processing[M]. London: Prentice Hall,2007.
  • 8YONG Fan. A real-time algorithm of dynamic background ex?traction in image sequencej C'[z /Proceedings 4th IEEE Interna?tional Conference on Machine Learning and Cybernetics. New York: IEEE Press,2005:4997-5000.
  • 9ROSTAMIANFAR 0,JANABI-SHARIFI F, HASSANZA?DEH I. Visual tracking system for dense traffic intersections[CJ]IProceedings of Electrical and Computer Engineering. New York:IEEE Pres5,2006:2000-2004.
  • 10GUPTE S, MASOUO 0, MARTIN R, et 81. Detection and classification of vehiclcs[J]' IEEE Transactions on Intelligent Transportation Systems,2002,3(]) :37-47.

共引文献41

同被引文献30

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部