期刊文献+

带宽自适应的Mean-Shift跟踪算法 被引量:2

Algorithm of Target Tracking Based on Mean-Shift with Adaptive Bandwidth
下载PDF
导出
摘要 针对传统Mean-Shift目标跟踪算法在进行物体跟踪时核函数带宽不能实时更新的问题,提出了一种基于比较中心加权直方图与边缘加权直方图的巴氏相似度的带宽自适应算法。首先,手动选取需要跟踪的目标,计算目标模板的中心加权直方图与边缘加权直方图以及二者的巴氏相似度HistDist1;然后,在当前帧通过Mean-Shift迭代找到目标的中心,并计算出候选模板的边缘加权直方图以及目标模板中心加权直方图与候选模板边缘加权直方图的巴氏相似度HistDist2;最后,在设定范围内比较巴氏相似度HistDist1与HistDist2的大小,得到目标的尺寸变化情况。试验结果表明,该算法可以适应尺寸发生变化的目标跟踪,实现了核函数带宽的自适应。 In allusion to the issue that the kernel functional bandwidth can not be updated in real time in traditional Mean-Shift target tracking algorithm,a new band-width-adaptive algorithm based on Bhattacharyya similarity between center weighted histogram and edge weighted histogram is proposed.First,the required target is selected manually in the first frame.Bhattacharyya similarity HistDist1between target template center weighted histogram and edge weighted histogram is calculated by using the Bhattacharyya.Then,the center of target in the current frame is searched by Mean-Shift algorithm.The Bhattacharyya similarity HistDist2between target template center weighted histogram and candidate template edge weighted histogram is calculated as similar to the HistDist2.Finally,the Bhattacharyya similarity HistDist2 is compared with HistDist1in a set range,the variation of target size is obtained.The result shows that the algorithm proposed in this paper can be adaptive to the scale-change of target,therefore the self-adaption of the kernel functional bandwidth is implemented.
出处 《长江大学学报(自然科学版)》 CAS 2017年第1期5-11,共7页 Journal of Yangtze University(Natural Science Edition)
基金 国家自然科学基金项目(11571041) 湖北省自然科学基金资助项目(2013CFA053)
关键词 带宽自适应 目标跟踪 MEAN-SHIFT算法 巴氏相似度 核函数 self-adaption of bandwidth target tracking Mean-Shift algorithm Bhattacharyya similarity kernel function
  • 相关文献

参考文献5

二级参考文献37

  • 1彭宁嵩,杨杰,刘志,张风超.Mean-Shift跟踪算法中核函数窗宽的自动选取[J].软件学报,2005,16(9):1542-1550. 被引量:165
  • 2朱胜利,朱善安.核函数带宽自适应的Mean shift目标跟踪算法[J].光电工程,2006,33(8):11-16. 被引量:18
  • 3刘从义,敬忠良,肖刚,杨波.Feature-based fusion of infrared and visible dynamic images using target detection[J].Chinese Optics Letters,2007,5(5):274-277. 被引量:5
  • 4FUKUNAGA K, HOSTETLER L D. The estimation of the gradient of a density function, with applications in pattern recognition [ J]. IEEE Transactions on Information Theory, 1975, 21(1) : 32 - 40.
  • 5COMANICIU D, RAMESH V, MEER P. Real-time tracking of non- rigid objects using Mean-Shift [ C]// IEEE Computer Vision and Pattern Recognition. Hilton Head Island. Washington, DC: IEEE Press, 2000, 2:142 - 149.
  • 6COLLINS R T. Mean-Shift blob tracking through scale space [ C]// IEEE International Conference on Computer Vision and Pattern Recognition. Baltimore, Victor Graphics: IEEE Press, 2003: 234- 240.
  • 7LINDEBERG T. Feature detection with automatic scale selection [ J]. International Journal of Computer Vision, 1998, 30(2) : 79 - 116.
  • 8K.FUKUNAGE,L.D.HOSTETLER.The estimation of the gradient of a density function with application in pattern recognition[J].IEEE Trans.Information Theory,1975,21(1):32-40.
  • 9Y.CHENG.Mean shift,mode seeking,and clustering[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1995,17(8):790-799.
  • 10D.COMANICIU,P.MEER.Mean shift analysis and application[J].Proceedings of the Seventh IEEE International Conference.Computer Vison,1999,2:1197-1203.

共引文献48

同被引文献12

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部