期刊文献+

基于行程时间的人车特征动态辨识方法 被引量:1

Dynamic identification method of driver and vehicle features based on travel time
下载PDF
导出
摘要 实现对驾驶倾向性、汽车类型的动态识别对构建以人为中心的汽车安全驾驶辅助系统具有重要意义。本文以驾驶员隐私保护为基础,利用车载全球定位系统(GPS)捕获的行程时间,建立基于Bayes决策树的人车特征动态辨识模型,识别汽车不同类型及其驾驶员倾向性。通过设计实车和虚拟驾驶实验分别验证在不同渗透率条件下的人车特征辨识效果,验证结果表明,本文建立的人车特征辨识模型准确率在80%以上,明显优于传统决策树模型;通过设计仿真实验验证了考虑驾驶倾向性的微观仿真和实际情况具有较好相合性,仿真验证结果间接证明本文研究成果的合理性。 It is of great significance for the people-centered safe driving assistant system to realize the dynamic identification of driver’s propensity and vehicle type. Considering the privacy protection, a dynamic identification model for driver and vehicle characteristics was established using Bayesian decision tree. The travel time obtained by global position system(GPS) data when cars went through an intersection was used to identify the vehicle type and driver’s propensity in the model. The identification effectiveness of human-vehicle characteristics under different permeability conditions was verified by real and virtual driving experiments. The results show that the accuracy rate of the established recognition model was above 80% and the established model was significantly better than the traditional decision tree model. The good consistency between the microscopic simulation considering driving tendency and the actual situation was verified by simulation experiment, and the rationality of the research results was proved indirectly.
出处 《汽车安全与节能学报》 CAS CSCD 2017年第1期38-45,共8页 Journal of Automotive Safety and Energy
基金 国家自然科学基金(61074140 61573009 51508315 51608313) 山东省自然科学基金(ZR2014FM027 ZR2016EL19) 山东省社会科学规划研究项目(14CGLJ27) 汽车安全与节能国家重点实验室开放基金(KF16232) 山东省高等学校科技计划(J15LB07)
关键词 汽车安全 人车特征 行程时间 隐私保护 他控技术 Bayes决策树 vehicle safety drivers and vehicles features travel time privacy protection other-control technology Bayesian decision tree
  • 相关文献

参考文献7

二级参考文献59

  • 1谢娜,张先国,张红霞,孔斌,袁萍,邓振华,黄思兴.酒后驾车道路交通事故流行病学研究[J].法律与医学杂志,2004,11(4):296-299. 被引量:13
  • 2张友民,戴冠中,张洪才,卢京潮.一种前馈神经网络的卡尔曼滤波学习方法[J].信息与控制,1994,23(2):113-118. 被引量:17
  • 3樊建聪,张问银,梁永全.基于贝叶斯方法的决策树分类算法[J].计算机应用,2005,25(12):2882-2884. 被引量:20
  • 4李程雄,丁月华,文贵华.SVM-KNN组合改进算法在专利文本分类中的应用[J].计算机工程与应用,2006,42(20):193-195. 被引量:23
  • 5HANJ KAMBERM 范明 孟小峰译.数据挖掘概念与技术[M].北京:机械工业出版社,2001..
  • 6QUINLAN JR.Induction of decision trees[J]. Machine Learning,1986,1(1): 81-106.
  • 7QUINLAN JR.Simplifying decision trees[J]. International Journal of Man Machine Studies,1987,27(3):221-234.
  • 8QUINLAN JR.Learning efficient classification procedures and their application to chess and games[A]. Machine Learning: an artificial intelligence approach[C].San Mateo,CA: Morgan Kaufmann,1983. 463-482.
  • 9CODD EF.Providing OLAP(On-Line Analytical Processing) to User-Analysts:An IT Mandate[R]. Technical Report, Technical Report, IBM, San Jose, CA, 1993.
  • 10杨炳儒 黄绍君.知识发现系统的研究进展与成果综述[J].人工智能进展,2000,1(1):334-340.

共引文献82

同被引文献3

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部