期刊文献+

白细胞自动分类系统的设计 被引量:1

A design of automatic classification system for leukocyte
下载PDF
导出
摘要 目的:设计一种白细胞自动识别分类系统,并对该系统进行评价,以解决临床实验室人工显微镜检查速度慢、检测结果不准确的问题。方法:采用MATLAB软件实现图像处理和算法分类,系统软件由数字图像处理模块、自动分析模块组成。通过分类器功能模块,进行判别函数的分类决策,并对系统进行仿真实验检测。结果:通过系统仿真实验,对样本细胞进行了检测,检测的识别精度达到93%,识别速度达到97.8个/s。结论:白细胞自动分类系统不仅降低人力消耗,而且提高白细胞检测精度和检测速度,具有一定的临床应用意义。 Objective: To design a automatic classification system for leukocytes in order to increase detection speed of manual microscope inspection and reduce the inaccurate detected results in clinical laboratory; and to evaluate this system. Methods: In this system, the image processing and algorithm classifying were achieved by MATLAB software consisted of digital image processing module and automatic classification module. Classification decision for discrimination function and simulated detection for this system were achieved by using automatic classification module. Results: In the simulation experiments, the detection results for sample cell demonstrated the recognition accuracy can achieve to 93% and the speed can achieve to 97.8 cells per second for this system. Conclusion: The automatic recognition and classification system for leukocyte not only reduces human consumption, but also improves the detection accuracy and detection speed for leukocyte, and it has some significant in clinical application.
作者 齐天白
出处 《中国医学装备》 2017年第3期16-20,共5页 China Medical Equipment
关键词 白细胞分类 MATLAB软件 分类器 系统仿真实验 Leukocyte classification MATLAB software Classifier System simulation experiment
  • 相关文献

参考文献5

二级参考文献48

  • 1卢兴国,丛玉隆.应重视和提升传统血液形态学检验诊断水平[J].中华检验医学杂志,2006,29(6):481-482. 被引量:114
  • 2Elkin Simson,崔巍.全自动血液分析仪的复检标准[J].中华检验医学杂志,2007,30(4):371-373. 被引量:20
  • 3无.全国血液学复检专家小组工作会议纪要暨血细胞自动计数复检标准释义[J].中华检验医学杂志,2007,30(4):380-382. 被引量:160
  • 4National Committee for Clinical Laboratory Standards.Reference leukocyte differential count (proportional) and evaluation of instrumental methods:Approved document H20-A[S].Villanova,PA:NCCLS,1992.
  • 5Yamamoto T,Tabe Y,Ishll K,et al.Performance evaluation of the cellaVision DM96 system in WBC differentials[J].Clin Pathol,2010,58(9):884-890.
  • 6Ceelie H,Dinkelaar R B,van Gelder W.Examination of peripheral blood films using automated microscopy; evaluation of Diffmaster Octavia and Cellavision DM96[J].J Clin Pathol,2007,60 (1):72-79.
  • 7Beksa M,Beksa M S,Tipi V B,et al.An artificial intelligent diagnostic system on differential recognition of hematopoietic cells from microscopic images[J].Cytometry,1997,30(3):145-50.
  • 8Tatsumi N,Pierre R V.Automated image processing.past,present,and future of blood cell morphology identification[J].Clin Lab Med,2002,22(1):299-315.
  • 9Houwen B.The differential cell count[J].Lab Hematol 2001,7(1):89-100.
  • 10Swolin B,Simonsson P,Backman S,et al.Differential counting of blood leukocytes using automated microscopy and a decision support system based on artificial neural networks-evaluation of DiffMaster Octavia[J].Clin Lab Haematol,2003,25 (3):139-147.

共引文献46

同被引文献13

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部