期刊文献+

覆冰分裂导线扭转刚度研究 被引量:6

Study of torsional stiffness of iced bundle conductors
下载PDF
导出
摘要 因分裂导线覆冰而导致的扭转刚度变化是舞动发生的重要原因之一,为了有效防治输电线路舞动,研究覆冰分裂导线扭转刚度很有必要.提出了一种考虑覆冰偏心的覆冰分裂导线扭转刚度计算方法,分析了覆冰对扭转刚度的影响.计算结果表明:覆冰导线的扭转刚度随覆冰量的增大而增大;常见易引发舞动的冰形中,扇形覆冰的偏心影响最大;覆冰偏心对扭转刚度有影响,初始结冰角越大,扭转刚度越大;覆冰导线在顺时针与逆时针的扭转刚度受覆冰偏心的影响基本相同,但临界扭转角和临界扭矩不同;不均匀覆冰会对分裂导线的扭转刚度产生显著影响.所得结果可为舞动的防治提供参考. The torsional stiffness change caused by ice on the bundle conductor is one of the important reasons for galloping. In order to prevent and control transmission line galloping,it is very necessary to study the torsional stiffness of iced bundle conductor. A method is proposed to calculate the torsional stiffness of iced bundle conductors with consideration of the icing eccentricity, and the effect of icing on torsional stiffness is discussed. The calculation results show that the torsional stiffness of iced conductors increases with the increase of ice amount. Among the common icing shapes which can cause galloping, the eccentricity of sector ice coating has the greatest impact. The icingeccentricity affects the torsional stiffness, and the larger the initial ice angle is, the greater the torsional stiffness is. The influence of the icing eccentricity on the torsional stiffness of the iced conductor is basically the same under the clockwise and anti-clockwise torsion, but the critical torsional angle and the critical torque are different. Uneven icing has significant effect on the torsional stiffness of bundle conductor. The obtained results can provide a reference for preventing and controlling galloping.
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2017年第2期170-176,共7页 Journal of Dalian University of Technology
基金 国家自然科学基金创新研究群体项目(51421064) 高等学校学科创新引智计划资助项目(B08014)
关键词 扭转刚度 输电线路 覆冰形状 偏心 torsional stiffness transmission line icing shape eccentricity
  • 相关文献

参考文献4

二级参考文献57

  • 1高选.导线-间隔棒系统最优化理论及实践[J].中国电力,1993,26(3):15-20. 被引量:9
  • 2樊社新,何国金,廖小平,朱江新,林义忠.结冰导线扭转刚度实验[J].中国电力,2005,38(10):45-47. 被引量:4
  • 3Nigol O, Clarke G J, Havard D G. Torsional stability of bundle conductors[J]. IEEE Transactions on Power Apparatus and Systems, 1977, PAS-96(5): 1666-1674.
  • 4Nigol O, Buchan P G. Conductor galloping part II: torsional mechanism[J]. IEEE Transactions on Power Apparatus and Systems, 1981, PAS-100(2): 708-720.
  • 5Wang J W, Lilien J L. A new theory for torsional stiffness of multi-span bundle overhead transmission lines[J]. IEEE Transactions on PowerDelivery, 1998, 13(4): 1405-1411.
  • 6Keutgen R, Lilien J L, Yukino T. Transmission line torsional stiffness, confrontation of field-tests line and finite element simulations[J]. IEEE Transaction on Power Delivery, 1999, 14(2): 567-578.
  • 7Keutgen R, Lilien J L. A new damper to solve galloping on bundled lines., theoretical background, laboratory and field results[J]. 1998, 13(1): 260-265.
  • 8Lu M L, Popplewell N, Shah A H, et al. Hybrid nutation damper for controlling galloping power lines[J]. IEEE Transactions on Power Delivery, 2007, 220): 450-456.
  • 9Desai Y M, Yu P, Popplewell N, et al. Finite element modeling of transmission line galloping[J]. Computers and Structures, 1995, 57(3): 407-420.
  • 10Desai Y M, Yu P, Shah A H, et al. Perturbation-based finite element analysis of transmission line galloping[J]. Journal of sound and vibration, 1996, 191(4): 469-489.

共引文献50

同被引文献129

引证文献6

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部