期刊文献+

曲线坐标系下非线性时变湍流信号处理与分析

Signal processing and analysis of nonlinear time-varying turbulence in a curvilinear coordinates system
下载PDF
导出
摘要 为了研究湍流特性以及定量分析湍流对飞行器的影响,本文将笛卡尔坐标系和圆柱坐标系进行转换、建立了危险因子数学模型,同时在雅可比行列式不为零的情况下,建立了任意曲线坐标系;根据拉梅系数和湍流的连续方程与运动方程建立了湍流的边界方程组,根据建立的边界方程组可以求出所有网格点的坐标;提出了一种湍流信号处理算法。仿真结果表明,建立的任意曲线坐标系和危险因子能够较好地反映湍流的特性,提出的信号处理算法能够真实有效地对湍流进行检测与预估。 In order to research turbulence properties and qualitatively analyze the influence of turbulence on aircraft, the Cartesian coordinate system and the cylindrical coordinate system were converted to each other in this paper, and the mathematical model of risk factors was established. Simultaneously assuming that the Jacobi determinant is not zero, an arbitrary curvilinear coordinate system was established. The turbulent boundary equations were built accord-ing to the Lame coefficient and the turbulent motion equation, and then the coordinates of all the grid points were calculated. A turbulent signal processing algorithm was proposed. The simulation results show that the established arbitrary curvilinear coordinate system and risk factors can better reflect the characteristics of turbulence, and the proposed turbulence signal processing algorithm can realistically detect and forecast the turbulence effectively.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2017年第3期460-464,共5页 Journal of Harbin Engineering University
基金 重庆市博士后研究人员科研项目(Xm2015029) 重庆市教委科学技术研究项目(KJ1500926 KJ1600923) 重庆市科委基础与前沿研究项目(cstc2014jcyj A40007) 国家自然科学基金重大研究计划项目(91438104 61571069 61501065 61502064 61503052 11547148)
关键词 曲线坐标系 网格剖分 湍流 谱宽 风速 时变湍流 信号处理 curvilinear coordinate system grid generation turbulence spectral width wind velocity time-varying turbulence signal processing
  • 相关文献

参考文献5

二级参考文献89

  • 1张明,张建华,高新颖,张平.一种通用宽带MIMO信道模型[J].电子学报,2006,34(10):1758-1762. 被引量:5
  • 2Woods S. Optical depolarization from turbulent convective flow[D]. Miami: University of Miami, 2010.
  • 3Sandalidis H G, Tsiftsis T A, Karagiannidis G K, et al. BER performance of FSO links over strong atmospheric turbulence channels with pointing errors[J]. IEEE Communications Let- ters, 2008,12(1) :44 -46.
  • 4Ligthart L P, Yanovsky F J, Prokopenko I G. Adaptive algo- rithms for radar detection of turbulent zones in clouds and pre- cipitation[J]. IEEE Trans. on Aerospace and Electronic Sys- tems, 2003,39(1) ,357 - 367.
  • 5Dias J M B, Leitao J M N. Nonparametric estimation of mean Doppler and spectral width[J]. IEEE Trans. on Geoscience and Remote Sensing, 2000,38(1) :271 - 282.
  • 6Yanovsky F J, Russchenberg H W J, Unal C M H. Retrieval of information about turbulence in rain by using Doppler-polarime- tric radar[J]. IEEE Trans. on Microwave Theory and Tech niques, 2005, 53(2):444-450.
  • 7Yanovsky F, Unal C, Russchenberg H. Doppler polarimetric ra- dar observations of turbulence in rain[R]. IRCTR-S-006 -03 U. S. Scientific Report,2003.
  • 8Mazura I V, Yanovsky F J. Modeling of relationship between differential Doppler velocity and turbulence[J]. Telecommunica- tion and Radio Engineering, 2007,66(12) :1113 - 1121.
  • 9Yanovsky F J, Russchenberg H W J, Unal C M H. Retrieval of information about turbulence in rain by using Doppler-polarimet ricradar[J]. IEEE Trans. on Microwave Theory and Tech- niques ,2005,53(2) :444 - 450.
  • 10Mazur I V, Yanovsky F J. Differential Doppler velocity: radar parameter for estimating turbulence intensity[J]. Telecommu- nications and Radio Engineering, 2006,65 (11) : 1371 - 1379.

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部