期刊文献+

基于风险最小化的多粒度三支决策模型 被引量:5

Multi-granularity Three-way Decision Model based on Minimum Risks
下载PDF
导出
摘要 为减小传统的二支决策中直接接受或拒绝决策带来的决策风险,分析问题决策的多粒度空间,研究了基于风险最小化的多粒度三支决策模型.在三支决策风险代价分析基础上,为寻求最优的粒度空间,结合不同属性特征在粒度空间中具有不同决策权重的特点,以粒化重要度和粒化决策权重为启发式信息,从多个不同的粒度层次出发,寻求风险最小的决策行动.最后针对不承诺选项中一些急需决策的现实问题,给出了基于风险控制的二支决策转化方法,并进行了具体的实例应用. A multi-granularity three-way decision model with minimum risk was proposed to remedy the inevitable risks which arise from traditional two-way decision when accepting or refusing directly, by analyzing question decisions in multi-gra-nularity spaces. Firstly, an effective granularity selection criterion was presented with granulating significance and decision weight in considering of different attribute effects for granularity spaces in different granularity level. Then, the particular three-way decision method with minimum risk was described. Lastly, a two-way transformed decision was studied when certain specific decision making was extremely needed and an application example was given to verify the decision efficiency.
作者 史进玲 张全友 杜根远 Shi Jinlinga Zhang Quanyoua Du Genyuanb(a. International School of Educatio b. College of Information Engineering, Xuchang University, Xuchang 461000, Chin)
出处 《河南师范大学学报(自然科学版)》 CAS 北大核心 2017年第2期101-107,共7页 Journal of Henan Normal University(Natural Science Edition)
基金 国家自然科学基金(U1304403) 2016年许昌市科技局基础与前沿计划研究项目
关键词 分险最小化 粒化 多粒度空间 最优决策 minimum risk granulating multi-granularity space optimal decision
  • 相关文献

参考文献5

二级参考文献108

  • 1[OL].<http://hadoop.apache.org.>.
  • 2WinterCorp: 2005 TopTen Program Summary. http:// www. wintercorp, com/WhitePapers/WC TopTenWP. pdf.
  • 3TDWI Checklist Report: Big Data Analytics. http://tdwi. org/research/2010/08/Big-Data-Analytics, aspx.
  • 4Chaudhuri S, Dayal U. An overview of data warehousing and OLAP technology. SIGMOD Rec, 1997,26(1): 65-74.
  • 5Madden S, DeWitt D J, Stonebraker M. Database parallelism choices greatly impact scalability. DatabaseColumn Blog. http://www, databasecolumn, com/2007/10/database-parallelism-choices, html.
  • 6Dean J, Ghemawat S. MapReduce: Simplified data processing on large clusters//Proceedings of the 6th Symposium on Operating System Design and Implementation (OSDI ' 04). San Francisco, California, USA, 2004: 137-150.
  • 7DeWitt D J, Gerber R H, Graefe G, Heytens M L, Kumar K B, Muralikrishna M. GAMMA--A high performance dataflow database machine//Proceedings of the 12th International Conference on Very Large Data Bases (VLDB' 86). Kyoto, Japan, 1986:228-237.
  • 8Fushimi S, Kitsuregawa M, Tanaka H. An overview of the system software of a parallel relational database machine// Proceedings of the 12th International Conference on Very Large DataBases(VLDB'86). Kyoto, Japan, 1986:209-219.
  • 9Brewer E A. Towards robust distributed systems//Proceedings of the 19th Annual ACM Symposium on Principles of Distributed Computing (PODC' 00). Portland, Oregon, USA, 2000:7.
  • 10http: //www. dbms2, com/2008/08/26/known-applications of mapreduce/.

共引文献669

同被引文献36

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部