期刊文献+

融合惯性导航与激光的服务机器人自定位研究

Autonomous Localization of Service Robots Based on IMU and Laser Data
下载PDF
导出
摘要 针对家庭服务机器人在导航中的自定位算法进行分析,并通过引入惯性导航环节采集数据对激光和里程计数据进行补偿和融合,得到了更为精确的地图,从而实现更精确的定位。首先通过分析SLAM问题,得到在只有激光和里程计的信息情况,机器人位姿数据的误差较大。通过融合惯导数据信息,基于Rao-Blackwellized粒子滤波方法得到的更高概率的粒子点,进行更准确的位姿估计。同时也会对得到更准确的地图,有效提高鲁棒性。并在家具场景中进行了实验,通过实验可看出,经过数据融合改进的机器人导航系统中自定位的位姿数据,可以较好的完成导航的任务。 The analyzing of this paper is the self- localization algorithm of home service robot in navigation and compensates and integrates the laser and odometer data by introducing the inertial navigation link data to obtain a more accurate map to achieve more accurate positioning. This paper first analyzes the SLAM problem and obtains the error of the robot pose data in the case of only laser and odometer. By combining the IMU data,a higher probability particle point based on the Rao- Blackwellized particle filter method is used to obtain more accurate pose estimation. But also to get more accurate map,effectively improve the robustness. In this paper,experiments were carried out in the furniture scene,we can see that the self- location pose data of the robot navigation system improved by data fusion can accomplish the navigation task well.
作者 范彬彬 陈万米 FAN Binbin CHEN Wanmi(School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200072, Chin)
出处 《网络新媒体技术》 2017年第2期46-51,共6页 Network New Media Technology
关键词 移动机器人 定位 数据融合 ROS Mobile robot Localization Data Fusion ROS
  • 相关文献

参考文献3

二级参考文献25

  • 1陈卫东,张飞.移动机器人的同步自定位与地图创建研究进展[J].控制理论与应用,2005,22(3):455-460. 被引量:60
  • 2厉茂海,洪炳熔.移动机器人的概率定位方法研究进展[J].机器人,2005,27(4):380-384. 被引量:15
  • 3Thnm S, Fox D, Burgard W. Probabilistic Algorithms and the Interactive Museum Tour-guide Robot Minerva[J]. International Journal of Robotics Research, 2000, 19(11): 972-999.
  • 4Bailey T. Mobile Robot Localisation and Mapping in Extensive Outdoor Environments[D]. Sydney, Australia: University of Sydney, 2002.
  • 5Durrant-Whyte H, Bailey T. Simultaneous localization and map- ping (SLAM): Part I [J]. IEEE Robotics and Automation Maga- zine, 2006, 13 (2): 99-110.
  • 6S. J. Julier, J. K. Uhlmann. A counter example to the theory of simultaneous localization and map building [A] //In IEEE Interna- tional Conference on Robotics and Automation [C]. pages 4238- 4243, 2001.
  • 7S. D. Huang, G. Dissanayake. Convergence analysis for Extended Kalman Filter based SLAM [A] //In Proc. , 2006 IEEE Int. Conf. Robotics and Automation [C]. 2006, pp. 412-417.
  • 8Tim Bailey, Juan Nieto, etal. Consistency of the FastSLAM algo- rithm [A] //Proceedings of the 2006 IEEE International Confer- ence on Robotics and Automation[C]. Orlando, Florida- May, 2006.
  • 9Arulampalam S M, Maskell S, Gordon N, et al. A Tutorial on Particle Filters for Online Non-Linear/Non-Gaussian Bayesian Tracking. IEEE Trans on Signal Processing, 2002, 50(2) : 174-188.
  • 10Pit M K, Shephard N. Filtering via Simulation: Auxiliary Particle Filters. Journal of the American Statistical Association, 1999, 94 (446) : 590-599.

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部