期刊文献+

Greenhouse Gas Emissions and Growth of Wheat Cultivated in Soil Amended with Digestate from Biogas Production

Greenhouse Gas Emissions and Growth of Wheat Cultivated in Soil Amended with Digestate from Biogas Production
原文传递
导出
摘要 Digestate, the product obtained after anaerobic digestion of organic waste for biogas production, is rich in plant nutrients and might be used to fertilize crops. Wheat(Triticum spp. L.) was fertilized with digestate, urea, or left unfertilized and cultivated in the greenhouse for 120 d. Emissions of greenhouse gasses(carbon dioxide(CO_2), methane(CH_4), and nitrous oxide(N_2O)) were monitored and plant growth characteristics were determined at harvest. The digestate was characterized for heavy metals, pathogens, and C and N mineralization potential in an aerobic incubation experiment. No Salmonella spp., Shigella spp., or viable eggs of helminths were detected in the digested pig slurry, but the number of faecal coliforms was as high as 3.6 × 10~4colony-forming units(CFU) g-^(1)dry digestate. The concentrations of heavy metals did not surpass the upper limits established by US Environmental Protection Agency(EPA). After 28 d, 17% of the organic C(436 g kg^(-1)dry digestate) and 8% of the organic N(6.92 g kg^(-1)dry digestate)were mineralized. Emissions of CO_2 and CH_4 were not significantly affected by fertilization in the wheat-cultivated soil, but digestate significantly increased the cumulative N_2O emission by 5 times compared to the urea-amended soil and 63 times compared to the uncultivated unfertilized soil. It could be concluded that digestate was nutrient rich and low in heavy metals and pathogens, and did not affect emissions of CH_4 and CO_2 when applied to a soil cultivated with wheat, but increased emission of N_2O. Digestate, the product obtained after anaerobic digestion of organic waste for biogas production, is rich in plant nutrients and might be used to fertilize crops. Wheat (Triticum spp. L.) was fertilized with digestate, urea, or left unfertilized and cultivated in the greenhouse for 120 d. Emissions of greenhouse gasses (carbon dioxide (CO2), methane (CH4), and nitrous oxide (N20)) were monitored and plant growth characteristics were determined at harvest. The digestate was characterized for heavy metals, pathogens, and C and N mineralization potential in an aerobic incubation experiment. No Salmonella spp., Shigella spp., or viable eggs of helminths were detected in the digested pig slurry, but the number of faecal coliforms was as high as 3.6 ~ 104 colony-forming units (CFU) g-1 dry digestate. The concentrations of heavy metals did not surpass the upper limits established by US Environmental Protection Agency (EPA). After 28 d, 17% of the organic C (436 g kg-1 dry digestate) and 8% of the organic N (6.92 g kg-1 dry digestate) were mineralized. Emissions of CO2 and CH4 were not significantly affected by fertilization in the wheat-cultivated soil, but digestate significantly increased the cumulative N20 emission by 5 times compared to the urea-amended soil and 63 times compared to the uncultivated unfertilized soil. It could be concluded that digestate was nutrient rich and low in heavy metals and pathogens, and did not affect emissions of CH4 and CO2 when applied to a soil cultivated with wheat, but increased emission of N20. Key Words: biodigester, C and N mineralization potential, faecal coliform, heavy metal, pathogen, pig slurry
出处 《Pedosphere》 SCIE CAS CSCD 2017年第2期318-327,共10页 土壤圈(英文版)
基金 funded by Cinvestav (Mexico)
关键词 温室气体排放 土壤栽培 小麦生长 沼气肥 修订 重金属浓度 美国环境保护局 粪大肠菌群 biodigester, C and N mineralization potential, faecal coliform, heavy metal, pathogen, pig slurry
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部