期刊文献+

基于BiCR算法的数值保角变换计算法

The BiCR method for numerical conformal mapping
下载PDF
导出
摘要 将BiCR(Bi-Conjugate Residual)算法与基于模拟电荷法的外部数值保角变换算法原理相结合,提出了基于BiCR算法的数值保角变换计算法,并通过数值实验检验了所提出算法是有效且可行的. A new method for numerical conformal mapping is considered. In this method, the linear equation of charge simulation method is solved using the BiCR(Bi-Conjugate Residual) algorithm,and the approximate conformal mapping function is constructed using the charge points and conformal mapping radius. Finally, the efficiency of the proposed method is illustrated by several numerical examples.
作者 吕毅斌 代荣恒 王樱子 LU Yi-bin DAI Rong-heng WANG Ying-zi(Faculty of science, Kunming university of science and technology, Kunming 650050, China Computer Center, Kunming university of science and technology, Kunming 650050, China)
出处 《东北师大学报(自然科学版)》 CAS CSCD 北大核心 2017年第1期48-52,共5页 Journal of Northeast Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(11461037)
关键词 模拟电荷法 保角变换 BiCR算法 charge simulation method, numerical conformal mapping BiCR method
  • 相关文献

参考文献4

二级参考文献44

  • 1齐红元 朱衡君.精密异型材挤压(拔制)模具复变三维形解析与模腔CAD/CAM建模理论.2000年中国博士后学术大会优秀论文集[M].中国科学出版社,2001..
  • 2威佛HJ 王中德 等.离散和连续傅立叶分析理论[M].北京:北京邮电学院出版社,1991..
  • 3Sleijpen G L G,Fokkema D R.BiCGStab(l) for Linear Equations Involving Unsymmetric Matrices with Complex Spectrum[J].Electronic Transactions on Numerical Analysis,1993,1(1):11-32.
  • 4Chan T F,Gallopoulos E,Simoncini V,et al.A Quasi-minimal Residual Variant of the Bi-CGTAB Algorithm for Nonsymmetric Systems[J].SIAM Journal on Scientific Computing,1994,2(15):338-347.
  • 5Sogabe T,Sugihara M,Zhang S L.An Extension of the Conjugate Residual Method to Nonsymmetric Linear Systems[J].Journal of Computational and Applied Mathematics,2009,1(226):103-113.
  • 6Duff I S,Grimes R G,Lewis J G.User's Guide for the Harwell-boeing Sparse Matrix Collection[R].Tech.Rep.RAL-92-086,Rutherford Appleton Laboratory,Chilton,UK,1992.
  • 7Bai Z,Day D,Demmel J,et al.A Test Matrix Collection for Non-hermitian Eigenvalue Problems[R].Tech.Rep.CS-97-355,Department of Computer Science,University of Tennessee,Knoxville,TN,March,1997.
  • 8Saad Y.SPARSKIT:A Basic Tool Kit for Sparse Matrix Computation[R].Tech.Rep.CSRD TR 1029,CSRD,University of Illinois,Urbana,IL,1990.
  • 9Davis T.UF Sparse Matrix Collection[EB].http://www.cise.ufl.edu/research/sparse/matrices,2009.
  • 10Saad Y. Iterative Methods for Sparse Linear Systems [M]. Boston: PWS Publishing Company, 1996.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部