期刊文献+

Teichmller space of negatively curved metrics on complex hyperbolic manifolds is not contractible

Teichmller space of negatively curved metrics on complex hyperbolic manifolds is not contractible
原文传递
导出
摘要 We prove that for all n = 4k- 2 and k 2 there exists a closed smooth complex hyperbolic manifold M with real dimension n having non-trivial π1(T<0(M)). T<0(M) denotes the Teichm¨uller space of all negatively curved Riemannian metrics on M, which is the topological quotient of the space of all negatively curved metrics modulo the space of self-diffeomorphisms of M that are homotopic to the identity. We prove that for all n = 4k - 2 and k ≥ 2 there exists a closed smooth complex hyperbolic manifold M with real dimension n having non-trivial π1(T〈0(M)). T〈0(M) denotes the Teichmuller space of all negatively curved Riemannian metrics on M, which is the topological quotient of the space of all negatively curved metrics modulo the space of self-diffeomorphisms of M that are homotopic to the identity.
出处 《Science China Mathematics》 SCIE CSCD 2017年第4期569-580,共12页 中国科学:数学(英文版)
关键词 space of Riemannian metrics negative curvature complex hyperbolic space Teichmuller空间 黎曼度量 负曲率 流形 双曲 微分同胚 度量空间 维数
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部