期刊文献+

Newmark方法求解二阶常微分方程Hopf分支等价性 被引量:1

The equivalence of Hopf bifurcation for second-order ordinary differential equation with Newmark method
下载PDF
导出
摘要 考虑一个带有参数的二阶常微分系统,对其线性化方程的特征方程根进行分析,研究系统平衡点的稳定性,得到系统产生Hopf分支的充分条件。利用Newmark方法将系统离散,分析离散系统特征方程根的分布情况,确定方法中的参数,保证对任意的步长离散系统存在Neimark-Sacker分支。证明在离散系统Neimark-Sacker分支存在的情况下,原连续系统具有Hopf分支。数值仿真验证了结果的有效性和适用性。 A second-order ordinary differential system with a parameter is considered. The stability of the equilibrium and the existence condition of Hopf bifurcation are studied by analyzing the distribution of the characteristic roots of the linearized equation. The system is discretized by Newmark method. By analyzing the distribution of the characteristic roots of the discrete system, a pair of parameters are determined such that the discrete system undergoes a Neimark-Sacker bifurcation for any time steps. On the contrary, it is proven that if there exists a Neimark-Saeker bifurcation for the discrete system, then the continuous system undergoes a Hopf bifurcation. Finally, some numerical simulations are given to show the accuracy of our theoretical analysis.
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2017年第1期12-18,共7页 Journal of Natural Science of Heilongjiang University
基金 国家自然科学基金资助项目(11301115 11271101)
关键词 二阶微分方程 HOPF分支 Newmark方法 Neimark-Sacker分支 second-order differential equation Hopf bifurcation Newmark method Neimark-Sacker bifurcation
  • 相关文献

参考文献1

二级参考文献14

  • 1Prigogene I, Lefever R. Symmetry breaking instabilities in dissipative systems Ⅱ[J]. J Chemical Physics, 1968, 48(4) : 1665-1700.
  • 2Brown K J, Davidson F A. Global bifurcation in the Brusselator system[J]. Nonlinear Analysis, 1995, 24(12): 1713-1725.
  • 3You Y. Global dynamics of the Brusselator equations [ J ]. Dynamics of PDE, 2007, 4 ( 2 ) : 157-195.
  • 4Peng R, Wang M X. Pattern formation in the Brusselator system[ J]. J Math Anal Appl, 2005, 309( 1 ) : 151-166.
  • 5Ghergu M. Non-constant steady-state solutions for Brusselator type systems[J]. Nonlinearity, 2008, 21(10): 2331-2345.
  • 6Peng R, Wang M X. On steady-state solutions of the Brusselator-type system[J]. Nonlinear Analysis: TMA, 2009, 71(3/4) : 1389-1394.
  • 7Yi F Q, Wei J J, Shi J P. Diffusion-driven instability and bifurcation in the lengyel-epstein system [ J ]. Nonlinear Analysis: RWA, 2008, 9 (3) : 1038 - 1051.
  • 8Yi F Q, Wei J J, Shi J P. Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system [J]. J Differential Equations, 2009, 246 (5) : 1944-1977.
  • 9Wang M X. Stability and Hopf bifurcation for a prey-predator model with prey-stage structure and diffusion[J]. Math Biosci, 2008, 212(2) : 149-160.
  • 10Du Y H, Pang P Y H, Wang M X. Qualitative analysis of a prey-predator model with stage structure for the predator[J]. SIAM J Appl Math, 2008, 69 (2) : 595-520.

共引文献2

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部