期刊文献+

基于不同关键词提取算法的维吾尔文本情感辨识

Keyword extraction algorithms for emotion recognition from Uyghur text
原文传递
导出
摘要 该文在研究不同的关键词提取方法的基础上,针对维吾尔语文本中的生气、高兴等常见情感类型进行情感辨识研究。结合维吾尔文本句子中的情感表达特点,用TextRank、稀疏判别分析(sparse discriminant analysis,SDA)和稀疏支持向量机(sparse support vector machine,Sparse SVM)等提取方法得到具有代表性的关键词集,并基于这些关键词集进行特征提取和情感模型构造。该文从电影电视剧中演员的维吾尔语台词、小说等文本中选取含有生气和高兴2种情感文本的句子,构造实验数据集并验证所提出的文本情感倾向性分析方法的有效性。实验结果表明:该文用多种方法所提取的关键词集都能有效地对维吾尔语文本句子进行情感分类,尤其是基于Sparse SVM的稀疏性分析的关键词提取方法在少量关键词语集上能有效地进行较高准确率的情感分类。 This paper describes sentiment classification research on Uyghur text using different keyword extraction methods to recognize common emotions like anger and happiness. The keywords expressing happiness and anger are extracted using the TextRank, sparse discriminant analysis (SDA) and sparse support vector machine (Sparse SVM) methods to train feature extraction and sentiment models. A sentiment text database was built by excerpting the anger and happiness sentiments from Uyghur movies and novels with several validation experiments based on those text databases. The tests show that the keyword extraction methods presented in this paper are effective for emotion classification from Uyghur sentences. The Sparse SVM method is robustness and has higher accuracy in recognition tests with a smaller number of keywords extracted.
作者 赛牙热.依马木 热依莱木.帕尔哈提 艾斯卡尔.艾木都拉 李志军 MAM Seyyare PARHAT Rayilam HAMDULLA Askar LI Zhijun(Key Laboratory of Signal and Information Processing Xinjiang University, Urumqi 830046, Chin)
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2017年第3期270-273,共4页 Journal of Tsinghua University(Science and Technology)
基金 国家社科基金资助项目(13BYY062) 国家自然科学基金资助项目(61163033 61065005) 教育部新世纪优秀人才支持计划资助项目(NCET-10-0969) 新疆维吾尔自治区高新技术发展研究计划项目(201312103)
关键词 TextRank 稀疏判别分析(SDA) 稀疏支持向量机(Sparse SVM) 情感识别 维吾尔语 TextRank sparse discriminant analysis(SDA) sparsesupport vector machine(Sparse SVM) emotion recognition Uyghur
  • 相关文献

参考文献7

二级参考文献63

  • 1刘群,张华平,俞鸿魁,程学旗.基于层叠隐马模型的汉语词法分析[J].计算机研究与发展,2004,41(8):1421-1429. 被引量:198
  • 2YANG Yi-ming, PEDERSEN J O. A comparative study on feature selection in text categorization[ C ]//Proc of the 14th International Conference on Machine Learning. San Francisco, CA: Morgan Kaufmann, 1997: 412-420.
  • 3Yu Hong, Hatzivassiloglou V. Towards Answering Opinion Questions; Separating Facts from Opinions and Identifying the Polarity of Opinion Sentences [C]//Proc. of Conference on Empirical Methods in Natural Language Processing. Morristown, USA; [s. n. ], 2003; 129- 136.
  • 4Turney P. Thumps up or Thumbs down? Semantic Orientation Applied to Unsupervised Classification of Reviews[C]//Proc. of the 40th Annual Meeting of the Association for Computational Linguistics. Morristown, USA: [s. n. ], 2002: 417-424.
  • 5Kanayama H, Nasukawa T. Fully Automatic Lexicon Expansion for Domain-oriented Sentiment Analysis[C]//Proe. of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: [s. n. ], 2006: 355-363.
  • 6KimSoo-Min, Hovy E. Determining The Sentiment of Opinions[C]//Proc. of the 20th International Conference on Computational Linguistics. Morristown, USA: [s. n], 2004: 1367-1373.
  • 7Tarney P D,Littman M L.Unsupervised Learning of Semantic Orientation from a Hundred-billion-word Corpus[EB/OL].(2002 05-15).http://iitatins2.iit.nrc.ca/publications/nrc-44929_e.html.
  • 8Wiebe J,Wilson T,Bell M.Identifying Collocation for Recognizing Opinions[C]//Proc.of Workshop on Collocation:Computational Extraction,Analysis,and Exploitation.[S.1.]:ACL Press,2001:24-31.
  • 9Tumey P D.Thumbs up or Thumbs down? Semantic Orientation Applied to Unsupervised Classification of Reviews[C]//Proc.of the 40th Annual Meeting of the Association for Computational Linguistics.[S.l.]:ACM Press,2002:417-424.
  • 10Dave K,Lawrence S,Pennock D M.Mining the Peanut Gallery Opinion Extraction and Semantic Classification of Product Reviews[C]//Proc.of the International World Wide Web Conference.New York,USA:ACM Press,2003:519-528.

共引文献96

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部