期刊文献+

利用铜纳米颗粒提高太阳能电池效率 被引量:4

Improved Efficiency of Solar Cells Using Cu Nanoparticles
原文传递
导出
摘要 采用磁控溅射系统在晶硅太阳能电池表面沉积了不同覆盖率的Cu纳米颗粒。以没有纳米颗粒覆盖的太阳能电池作为参考电池,研究了Cu纳米颗粒对太阳能电池电学特性的影响。结果表明:在覆盖率增加的过程中,纳米颗粒主要以单个纳米颗粒的形式出现,并且很少有纳米颗粒发生团聚现象。具有2%纳米颗粒覆盖率电池的外量子效率最好。电流-电压特性测量结果表明:具有2%纳米颗粒覆盖率电池的填充因子和转换效率最好。与参考电池相比,2%纳米颗粒覆盖率电池的填充因子相对提高了36.5%,转换效率相对提高了37%。 Cu nanoparticles with different coverages were deposited on crystalline Si solar cell surfaces by a magnetron sputtering system. The solar cell without nanoparticles was used as a reference cell. The influence of Cu nanoparticles on the electrical performance of solar cells was investigated. The results show that the nanoparticles appear predominantly single particles, and a few nanoparticles within some clusters occur when the coverage increases. The optimum external quantum efficiency (EQE) of the cell with 2% nanoparticles coverage can be obtained. According to the current-voltage (I-V) measurements, the optimum fill factor and conversion efficiency of the cell with 2% nanoparticles coverage can be obtained. The fill factor of the cell with 2% nanoparticles coverage is increased by 36.5% and the conversion efficiency of the cell with 2% nanoparticles coverage is increased by 37%, compared to the reference cell.
出处 《硅酸盐学报》 EI CAS CSCD 北大核心 2017年第4期490-494,共5页 Journal of The Chinese Ceramic Society
基金 北京市科学技术研究院创新团队计划(IG201403C2)项目
关键词 铜纳米颗粒 覆盖率 电学性能 填充因子 转换效率 copper nanoparticle coverage electrical performance fill factor conversion efficiency
  • 相关文献

参考文献1

二级参考文献32

  • 1Haase C, Stiebig H. Thin-film silicon solar cells with efficient periodic light trapping texture [J]. Appl. Phys. Lett. , 2007, 91: 061116-061118.
  • 2Hitoshi S, Hiroyuki F, Michio K, et al. Enhancement of light trapping in thin-film hydrogenated microcrystalline Si solar cells using back reflectors with self-ordered dimple pattern [J]. Appl. Phys. Lett. , 2008, 93: 143501-1-143501-3.
  • 3Catchpole K R, Polman A. Plasmonic solar cells[J]. Opt. Express, 2008, 16(26): 21793-21800.
  • 4Pillai S, Green M A. Plasmonics for photovoltaic applications [J]. Solar Energy Materials and Solar Cells, 2010, 94(9): 1481-1486.
  • 5Ferry V E, Verschuuren M A, Li H B, et al. Light trapping in ultrathin plasmonic solar cells[J]. Opt. Express, 2010, 18: A237-245.
  • 6Lee H C, Wu S C, Yang T C, et al. Efficiently harvesting sun light for silicon solar cells through advanced optical couplers and a radial p-n junction structure[J]. Energies, 2010, 3(4):784-802.
  • 7Pillai S. Surface plasmons for enhanced thin-film silicon solar cells and light emitting diodes [D]. Sydney, Australia.. University of New South Wales,2007: 28-72.
  • 8Bohren C F, Huffman D R. Absorption and scattering of light by small particles[M]. New York: Wiley- Interscience, 1983.
  • 9Cortie M B. The weird world of nanoscale gold[J]. Gold Bull, 2004, 37: 1-2.
  • 10Pissuwan D, Valenzuela S, Cortie M B. Therapeutic possibilities of plasmonieally heated gold nanopartieles[J]. Trends Bioteehnol, 2006, 24 (2) : 62-67.

共引文献12

同被引文献33

引证文献4

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部