期刊文献+

基于非局部自相似图像块字典学习的伪CT图像预测 被引量:4

Pseudo CT Estimation by Non-local Self-similar Image Patch Based Dictionary Learning
下载PDF
导出
摘要 随着PET/CT技术的日益发展,其被广泛应用于现代放射治疗。但在采集数据过程中,对人体放射时间较长,辐射当量较大,增加了患者的痛苦,因此人们希望减少CT扫描中X射线的辐射。为解决这一问题,本文提出基于非局部自相似图像块字典学习的伪CT图像预测方法。首先,对训练CT与MRI图像进行图像分块,通过块匹配算法聚类CT图像块,并提取CT与MRI图像块的多尺度特征。其次,通过字典学习,获得MRI图像与CT图像的映射关系矩阵,并对CT图像块进行预测。最后,通过重构算法,从目标MRI图像中得到预测CT图像。仿真实验证明了提出算法相对基于图谱集算法的有效性,以及在现代放射治疗中利用MRI图像替代CT图像的应用前景。 Positron emission tomography computed tomography( PET/CT) is increasingly being used in modern radiotherapy( RT) treatment in combination with computed tomography( CT). Due to the high dose of radiation exposure in CT scan,there is always a great desire to reduce the amount of the radiation dose in x-ray computed tomography( CT) because of the health risks. In this paper,we investigate the potential of non-local self-similar patch-based dictionary learning based pseudo CT estimating method for tackling this challenging task. Firstly,the method partitions training CT and MRI images into a set of patches. For each patch,voxel multi-scale features are extracted and a block-matching method is applied to cluster the CT image patches. Then by dictionary learning,we obtain the MRI-CT mapping matrix and predict CT patches as a structured output. Finally,by reconstruction method,we output the estimated CT image. Experimental results show that our method perform better than existing atlas-based method and showed a promising potential for RT of brain based only on MRI.
出处 《信号处理》 CSCD 北大核心 2017年第3期346-351,共6页 Journal of Signal Processing
基金 国家自然科学基金项目(61340034) 滨州学院科研基金项目(BZXYG1112)
关键词 非局部自相似性 字典学习 多尺度特征 伪CT图像 non-local self-similarity dictionary learning multi-scale feature pseudo CT
  • 相关文献

参考文献1

二级参考文献13

  • 1楚恒,朱维乐.一种利用像素分类的自适应小波图像降噪方法[J].光电子.激光,2007,18(4):482-486. 被引量:15
  • 2Ha Sungsoo, MueUer Kiaus. Low dose CT image restora- tion using a database of image patches [ J ]. Physics in Medicine and Biology,2015,60(2) :869-882.
  • 3Mitsuru Ikeda, Reiko Makino, Kuniharu Imai. A new eval- uation method for image noise reduction and usefulness of the spatially adaptive wavelet thresholding method for CT images[J]. Australasian Physical & Engineering Sciences in Medicine,2012,35 (4) :475-483.
  • 4You Su Jeong, Cho Nam Ik. An adaptive bandwidth nonlo- cal means image denoising in wavelet domain. Eurasip Journal on Image and Video Processing,2013,60:1-22.
  • 5Jain Paras, Tyagi, Vipin. LAPB: Locally adaptive patch- based wavelet domain edge-preserving image denoising. Information Sciences ,2015,294 : 164-181.
  • 6Ricardo Dutra da Silva, Rodrigo Minetto, William Robson Schwartz,et al. Adaptive edge-preserving image denoising using wavelet transforms. Pattern Analysis and Applica- tions,2013,16(4) :567-580.
  • 7Chiang W C, Lin H H, Huang C S, et al. The cluster as- sessment of facial attractiveness using fuzzy neural net- work classifier based on 3D Moir~ features [ J ]. Pattern Recognition ,2014,47 ( 3 ) : 1249-1260.
  • 8Jawarkar N P. Emotion Recognition using Prosody Fea- tures and a Fuzzy Min-Max Neural Classifier [ J ]. Iete Technical Review,2014,24(5 ) :369-373.
  • 9Davtalab R, Dezfoulian M H, Mansoorizadeh M. Multi- Level Fuzzy Min-Max Neural Network Classifier [ J ].IEEE Transactions on Neural Networks & Learning Sys- tems ,2014,25 (3) :470-482.
  • 10Binu D, Selvi M. BFC: Bat Algorithm Based Fuzzy Clas- sifier for Medical Data Classification [ J ]. Journal of Medi- cal Imaging & Health Informaties ,2015,5 ( 8 ) :599- 606.

共引文献2

同被引文献12

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部