期刊文献+

基于LPP和改进SIFT的copy-move篡改检测 被引量:8

Copy-move Forgery Detection Based on LPP and Improved SIFT Algorithm
下载PDF
导出
摘要 图像的复制-粘贴篡改检测是图像篡改检测领域中的重要组成部分。本文基于SIFT算法以及LPP的降维思想,提出了一种新的篡改检测算法。本文在SIFT算法的基础上,使用LPP算法对SIFT算法生成的特征点以及特征向量进行降维。使得传统SIFT算法在实际应用中特征点数目过多、特征向量维数过高等缺陷得到了解决。并使用凝聚型层次聚类算法对相似的特征点进行聚类,完成了对图像复制-粘贴篡改区域的检测。在文章的最后,本文对哥伦比亚大学复制-粘贴图像库里的100张图片进行实验。实验结果表明,不管篡改区域后处理方式是拉伸还是旋转,本文算法都能比传统的SIFT、SURF、PCA-SIFT等算法生成更少的特征点数目和更低的特征向量维度,使得检测效率以及检测正确率得到有效提升。 Image copy-move forgery detection is an important part of image forgery detection. In this paper, we propose a novel forgery detection algorithm based on the SIFT and LPP algorithm. First, we use LPP algorithm to reduce the dimen- sion of feature points and feature-vectors which are generated by the SIFT algorithm. Solving many defects of the traditional SIFT algorithm like the number of feature points are too many, the dimension of the feature-vector is too high etc. Then we cluster the similar feature points using the cohesive hierarchical clustering algorithm to find out the copy-move forgery area. At the end of the article, we make some experiments to test our algorithm, using 100 pictures in the Columbia University copy-move forgery image library. Results show that the proposed algorithm can generate fewer feature points and lower di- mensions of the feature-vector than traditional SIFT, SURF, and PCA-SIFT algorithm, making the efficiency and the accu- racy rate of the image forgery detection greatly improved, regardless of how the forgery regions are stretched or rotated.
出处 《信号处理》 CSCD 北大核心 2017年第4期589-594,共6页 Journal of Signal Processing
基金 973项目(2012CB316304) 国家自然科学基金项目(61471032)
关键词 篡改检测 复制-粘贴篡改方式 尺度不变特征变换 局部保持投影技术 tamper detection copy-move forgery method scale-invariant feature transform local preserve projection
  • 相关文献

参考文献1

二级参考文献13

  • 1Hsu Y F, Chang S F. Detecting image splicing using ge- ometry invariants and camera characteristics consistency [ C ]//Proc of International Conference Multimedia and Expo. Toronto : IEEE, 2006.549-552.
  • 2Luo W, Qu z, Huang J, Qiu G. A novel method for detec- ting cropped and recompressed image block [ J ]. Proceed- ings of the International Conference on Acoustics, Speech,and Signal Processing ,2007, vol. 2:217-220.
  • 3Yi-Lei Chen,Chiou-Ting Hsu. Detecting recompression of JPEG images via periodicity analysis of compression artifacts for tampering detection [ J ]. IEEE Transactions on Information Forensics and Security, 2011,6 ( 2 ) : 396-406.
  • 4Peng F, Ni Y, Long M, A complete passive blind image copy-move forensics scheme based on compound statistics features, Forensic Science International, 212 ( 1 ) ( 2011 ) e21-e25.
  • 5Chierchia G, Parrilli S, Poggi G, et al. PRNU-based de- tection of small-size image forgeries[ C ]//. 17th Interna- tional Conference on Digital Signal Processing. IEEE, 2011.1-6.
  • 6He J F, Lin Z C, Wang L F, et al. Detecting doctored JPEG images via DCT coefficient analysis [ C ] // Proceed- ings of European Conference on Computer Vision. Berlin- Heidelberg-New York : Springer-Verlag, 2006. 423- 435.
  • 7Donoho D L, Johnstone I M. Ideal spatial adaptation via wavelet shrinkage [ J ]. Biometrika, 1994,81:425- 455.
  • 8Mahdian B, Saic S, Using noise inconsistencies for blind image forensics, Image and Vision Computing, 27 ( 10 ) (2009) 1497-1503.
  • 9Li T Y, Wang M H, Li T J. Estimating noise parameter based on the wavelet coefficients estimation of original im- age [ C ]//j. International Conference on Challenges in En- vironmental Science and Computer Engineering. 2010, 126-129.
  • 10Gou H M. Intrinsic sensor noise features for forensic anal- ysis on scanners and scanned images [ J]. IEEE Transac- tions on Information Forensics and Security,2009,4( 3 ) : 476-491.

共引文献10

同被引文献48

引证文献8

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部