期刊文献+

基于圆迹SAR的目标方位散射特征提取研究 被引量:2

Target Feature Extraction on Azimuth Angles Based on Circular-SAR
下载PDF
导出
摘要 人造目标多数具有各向异性,即目标在不同的方位向角响应不同,此特性可用于人造目标的识别与分类等,而圆迹合成孔径雷达能够获得目标的全方位信息,因此本文基于圆迹合成孔径雷达提出回波反演的方法,提取目标点的回波信号强度与相位随方位向的变化曲线,并定义方位向特征:散射持续角、回波信号响应峰值与峰值散射方位角。依据方位向特征可实现人造目标识别与自适应成像,文中已通过微波暗室实验与机载实验数据定性的证明了方法的有效性与应用的可行性。 Most artificial targets is anisotropic. Over large azimuth angular extents the energy reflected by anisotropic tar- gets is not uniform. This feature is helpful to distinguish different kinds of targets. Data inversion method based on Circular- SAR is proposed to extract this feature for Circular-SAR can obtain 360~observation of targets. Thus three features are de- fined, which are the persistence angle, peak value and scattering direction. These features can be apply in artificial targets recognition and adaptive imaging. The method and its application is validated by airborne data.
出处 《信号处理》 CSCD 北大核心 2017年第4期613-617,共5页 Journal of Signal Processing
基金 国家自然科学基金面上项目(61571421) 国家自然科学基金重点项目(61431018)
关键词 CSAR 方位向 回波反演 特征提取 各向异性 CSAR azimuth angles data inversion feature extraction anisotropic
  • 相关文献

参考文献1

二级参考文献85

  • 1L. Xu,P. Yan,T. Chang. Best First Strategy for Feature Selection[ A ]. Proc. Ninth Int' l Conf. Pattern Recognition [ C]. 1988. 706-708.
  • 2J. Yang,V. Honavar. Feature Subset Selection Using A Genetic Algorithm [ J ]. Feature Extraction, Construction and Selection :A Data Mining Perspective. 1998.117-136.
  • 3L. Yu, H. Liu. Feature Selection for High-Dimensional Data: A Fast Correlation-Based Filter Solution [ A ]. Proc. 20th Int' l Conf. Machine Learning [ C]. 2003. 856-863.
  • 4王岩.机载SAR目标特征提取与识别方法研究[M].博士学位论文.长沙:国防科学技术大学研究生院.2003.9.
  • 5Zhaohui Chen. Machine Learning Approach Towards Automatic Target Recognition. A thesis for the doctor' s degree. Cambridge, Massachusetts, USA : Harvard University. August,2001.
  • 6Anil K. Jain, Robert P. W. Duin, and Jianchang Mao. Statistical Pattern Recognition : A Review. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 22, No. 1, pp. 4-37, January 2000.
  • 7L. M. Novak, et al. The Automatic Target Recognition System in SAIP. The Lincoln Laboratory Journal, 1997, 10 (2) :187 -202.
  • 8M. Greenspan,et al. Development and Evaluation of a Real Time SAR ATR System. IEEE, 1998:38- 43.
  • 9R. A. English, et al. DeveLopment of an ATR Workbench for SAR Imagery. Technical Report, DRDC ,Ottawa,2005.
  • 10J. C. Oliver, et al. http ://www. infosar, co. uk/misc/demo. html.

共引文献23

同被引文献16

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部