期刊文献+

插值矩阵法分析轴向受载的Euler-Bernoulli梁双向弯曲与扭转耦合振动 被引量:3

Analysis of bi-axes bending-torsional coupled vibration of Euler-Bernoulli beams under axial load by interpolating matrix method
下载PDF
导出
摘要 文章运用插值矩阵法研究了轴向受载的Euler-Bernoulli梁的双向弯曲扭转耦合自由振动问题。选择梁横截面的剪切中心作为坐标原点,坐标轴平行于梁截面的几何轴,振动微分方程中有关梁截面几何特性的参数均采用相对于几何轴的参数。轴向受载的Euler-Bernoulli梁的双向弯曲扭转耦合自由振动频率的计算转化为一组非线性常微分方程特征值问题,运用插值矩阵法求解,获得了3种边界条件下梁弯扭耦合振动的固有频率及其相应振型函数的计算结果,将数值计算结果与已有结果比较表明,文中方法具有很高的精度和效率。 The bi-axes bending-torsional coupled free vibrations of axially loaded Euler-Bernoulli beams with bi-asymmetric cross sections are studied by the interpolating matrix method. The reference point coincident with shear center of the beam is chosen and the reference axes are parallel to the geometric axes of cross sections, The geometric parameters of the cross sections of the beam are determined with respect to geometric axes. Then the governing equations of the free vibrations of axially loaded Euler- Bernoulli beams are transformed into a set of nonlinear characteristic ordinary differential equations (ODEs) with the natural frequencies orders. The interpolating matrix method is introduced to solve the derivative ODEs with three kinds of boundary conditions. Then the natural frequencies and the as- sociated mode shape of the beam are obtained. The numerical results show that the method is efficient and has very high accur^icy while comparing with the existing solutions.
作者 张金轮 葛仁余 韩有民 牛忠荣 程长征 ZHANG Jinlun GE Renyu HAN Youmin NIU Zhongrong CHENG Changzheng(Key Laboratory for Mechanics, Anhui Polytechnic University, Wuhu 241000, China School of Civil and Hydraulic Engineering, Hefei University of Technology, Hefei 230009, China)
出处 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2017年第3期373-378,共6页 Journal of Hefei University of Technology:Natural Science
基金 国家自然科学基金资助项目(11272111 11372094) 安徽省高等学校自然科学研究重点资助项目(KJ2016A055)
关键词 EULER-BERNOULLI梁 轴向荷载 固有频率 插值矩阵法 Euler-Bernoulli beam axial load natural frequency interpolating matrix method
  • 相关文献

参考文献2

二级参考文献14

  • 1黄君毅,王勇.Bernoulli-Euler薄壁梁双向弯曲与扭转耦合的振动分析[J].第十三届全国工程建设计算机应用学术会议论文,广东佛山,2006,85-91.
  • 2Banerjee.Free vibration of axially loaded composite Timoshenko beams using the dynamic stiffness matrix method[J].Computers and Structures.1998:69,197-208.
  • 3Li J,Li W Y,Shen R Y,Hua H X,Jin X D.Coupled bending and torsional vibration of axially loaded Bernoulli-Euler beams including warping effects[J].Applied Acoustics.2004,65(2),153-170.
  • 4Jun Li,Shen R Y,Hua H X,Jin X D.Bending-torsional coupled dynamic response of axially loaded composite Timoshenko thin-walled beam with closed cross-section[J].Composite Structures.2004,64(2),23-35.
  • 5Kaya,Ozdemir Ozgumus.Flexural-torsional coupled vibration analysis of axially loaded closed-section composite Timoshenko beam by using DTM[J].Journal of Sound and Vibration,2007,306,495-506.
  • 6Viola,Ricci,Aliabadi.Free vibration analysis of axially loaded cracked Timoshenko beam structures using the dynamic stiffness method[J].Journal of Sound and Vibration,2007,304,124-153.
  • 7Rafezy B,Howson W P.Exact dynamic stiffness matrix for a thin-walled beam of doubly asymmetric cross-section filled with shear sensitive material[J].International Journal For Numerical Methods In Engineering.2007,69:2758-2779.
  • 8Bishop R E D,Cannon S M,Miao S.On coupled bending and torsional vibration of uniform beams[J].Journal of Sound and Vibration,1989,131:457-464.
  • 9牛忠荣,合肥工业大学学报,1987年,9卷
  • 10结构的振动和稳定性,1963年

共引文献21

同被引文献27

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部