期刊文献+

基于LU分解的LDPC编码改进算法研究 被引量:3

Research on Modified LDPC Encoding Algorithm Based on LU Decomposition
下载PDF
导出
摘要 为了使低密度奇偶校验码(Low Density Parity-check Code,LDPC)的校验矩阵H满足系统码的形式,同时降低校验矩阵的复杂度,减少编码时的存储空间,提出改进的优化准则,设计一种基于LU分解的算法。通过用全主元策略对校验矩阵进行高斯消元、行列交换等调整,使之具有系统码的形式,分解后得到的矩阵具有更好的稀疏性,从而可以进一步简化编码设计、减小存储空间占用和降低计算复杂度。所采用的算法与校验矩阵的构造无关,对性能无影响,且利于硬件实现,具有较好的应用前景。 In order to make the check matrix H of Low Density Parity-check Codes (LDPC) meet the form of systematic code, reduce the complexity of LDPC and the storage space during coding, this paper proposes improved optimal criteria, and designs an algorithm based on LU decomposition. This algorithm uses complete pivot strategy to perform Gaussian elimination and row and column exchange to make the H have the form of systematic code. The decomposed matrix has better sparsity to further simplify code design and reduce storage space and computation complexity. The simulation results show that the modified algorithm is independent of the constitution of check matrix and favourable to hardware implementation, and has no influence on performance, so it has better application prospect.
作者 高宏伟 GAO Hong-wei(Unit 91604, PLA, Longkou Shandong 265700, China)
出处 《无线电工程》 2017年第4期31-34,共4页 Radio Engineering
关键词 校验矩阵 系统码 LU分解 低密度奇偶校验码 编码 改进算法 check matrix systematic code LU decomposition LDPC encoding modified algorithm
  • 相关文献

参考文献4

二级参考文献39

  • 1岳田,裴保臣.LDPC码的几种译码算法比较[J].无线电通信技术,2006,32(4):24-26. 被引量:8
  • 2BERNARDW,STEARNSSD著.自适应信号处理[M].王永德,龙宪惠译.北京:机械工业出版社,2008:69-79.
  • 3HU Jun,DUMAN T M. Low Density Parity Check Codes Over Wireless Relay Channels [ J]. IEEE Transaction on Wireless Communications ,2006,24( 11 ) :2040 - 2050.
  • 4PROKIS J G. Digital Communication (Third Editon ) [ M]. American: McGRAw-HILL International Edition, 1995:538 - 544.
  • 5HUNTER T E, NOSRATINIA A. Cooperation Diversity through Coding [J]. Information Throry, 2002, 7:220 -225.
  • 6Smith B P, Kschischang F R. Future Prospects for FEC in Fiber-Optic Communications[J]. IEE[Journal on Selected Topics in Quantum Electronics, 2010,16(5): 1245-1257.
  • 7Kou Y, Lin S, Fossorier M P C. Low-density Parity-check Codes Based on Finite Geometries: a Rediscovery and New Results[J]. IEEE Transactions on Information Theory, 2001, 47 (7): 2711-2736.
  • 8Gho Gwang-Hyun, Klak L, KahnJoseph M. Rate-Adaptive Coding for Optical Fiber Transmission Systems[J].Journal of Lightwave Technology, 2011, 29(2): 222-233.
  • 9Gallager R: Low-density Parity-check Codes[J]. IRE Transactions on Information Theory, 1962, 8(1): 21-28.
  • 10ZhangJ, Fossorier M P C. A Modified Weighted Bit-flipping Decoding of Low Density Parity-check Codes[J]. IEEE Communications Letters, 2004, 8( 3): 165-167.

共引文献7

同被引文献27

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部