期刊文献+

弱聚类网络上SI传染病的渗流

The Percolation of SI Epidemic Models on Clustered Networks
下载PDF
导出
摘要 考虑了含有3团和4团的弱聚类网络,并建立了联合分布函数,借助生成函数的方法得到任选一个节点属于连通巨片的概率以及节点属于连通片的平均规模和发生连通巨片相变的渗流阈值.同时将边渗流应用于SI传染病模型中,通过模拟分析聚类系数对染病者形成连通巨片规模大小的影响. This paper considers a class of clustered networks which contains arbitrary 3-cliques and4-cliques,and establishes the multidimensional joint distribution function.By using the generating function to calculate the probability that one node belongs to the giant connected component(GCC),the expected size of the connected component that one node is connected and the percolation threshold of the GCC.At the same time,this paper applys the bond percolation process to the spread of SI epidemic model.We study the effects of the global clustering coefficient on the existence of the GCC by numerical simulations.
作者 吴婷 张晓光 WU Ting ZHANG Xiao-guang(Complex Systems Research Center,Shanxi University,Taiyuan 030006,China School of Mathematical Sciences,Shanxi University,Taiyuan 030006,China)
出处 《云南师范大学学报(自然科学版)》 2017年第2期28-34,共7页 Journal of Yunnan Normal University:Natural Sciences Edition
基金 国家自然科学基金资助项目(11331009) 山西省科技创新团队计划资助项目(2015013001-06)
关键词 弱聚类网络 生成函数 渗流理论 连通巨片 Clustered networks Generating function Percolation theory Giant connected component
  • 相关文献

参考文献4

二级参考文献37

  • 1KERMACK W O,McKENDRICK A G. A contribution to the mathematical theory of epidemics[ C]//Proceedings of the Royal So- ciety of London A: Mathematical, Physical and Engineering Sciences. The Royal Society, 1927,115 (772) :700 - 721.
  • 2ZHANG H, SMALL M, FU X, et al. Modeling the influence of information on the coevolution of contact networks and the dynamics of infectious diseases [ J ]. Physica D: Nonlinear Phenomena,2012,241 ( 18 ) : 1512 - 1517.
  • 3WANG Y, JIN Z, YANG Z, et al. Global analysis of an SIS model with an infective vector on complex networks [ J ]. Nonlinear A- nalysis: Real World Applications ,2012,13 ( 2 ) :543 - 557.
  • 4YUAN X, XUE Y, LIU M. Global stability of an SIR model with two susceptible groups on complex networks [ J ]. Chaos, Solitons and Fractals,2014,59:42 - 50.
  • 5VAN den DRIESSCHE P,WATMOUGH J. Reproduction numbers and sub -threshold endemic equilibria for compartmental mod- els of disease transmission [ J ]. Mathematical Biosciences,2002,180 ( 1 ) : 29 - 48.
  • 6LAJMANOVICH A, YORKE J A. A deterministic model for gonorrhea in a nonhomogeneous population [ J ]. Mathematical Biosci- ences, 1976,28 ( 3 ) :221 - 236.
  • 7LOU J, RUGGERI T. The dynamics of spreading and immune strategies of sexually transmitted diseases on scale - free network [ J ]. Journal of Mathematical Analysis and Applications,2010,365 ( 1 ) :210 - 219.
  • 8DIEKMANN O, HEESTERBEEK J A P, ROBERTS M G. The construction of next - generation matrices for compartmental epidem- ic models[J]. J R SOc Interface,2010(7) :873 -885.
  • 9DIEKMANN O, HEESTERBEEK J A P, METZ J A J. On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations [ J ]. Journal of Mathematical Biology, 1990,28 (4) :365 -382.
  • 10SUN C,WEI Y,KHAN A K. Effect of media-induced social distancing on disease transmission in a two patch setting[J]. Mathematical Biosciences, 2011,230 (2) : 87-95.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部