期刊文献+

基于EEMD和Teager能量谱提取轴承故障特征

Extracting Fault Feature of Bearing Based on EEMD and Teager Energy Spectrum
下载PDF
导出
摘要 针对轴承振动信号非平稳性以及故障特征难于提取等特点,提出结合集成经验模式分解和Teager能量算子解调,构造Teager能量谱提取轴承故障特征的方法。利用集成经验模式分解能够抑制经验模式分解在处理非平稳振动信号时的模态混叠,Teager能量算子解调能够抑制传统Hilbert变换中的端点效应,具有计算速度快、解调效果好等优点,分解轴承故障信号,计算本征模函数的Teager能量谱,并提取轴承故障特征。仿真和试验分析结果验证了该方法的有效性。 Considering the non-stationary of the vibration signals and it is difficult to extract the fault feature of bearing, the paper proposes a Teager energy spectrum method to extract fault feature by combining ensemble empirical mode decomposition (EEMD) and Teager energy operator (TEO). EEMD can restrict the mode aliasing while processing non-stationary vi- bration signals with empirical mode decomposition (EMD) and TEO can restrict the end effects in Hilbert transform, and TEO possesses properties of fast computation and excellent demodulation effects. By using EEMD, it can decompose vibra- tion signals of bearing and calculate Teager energy spectrum of intrinsic mode function ( IMF), and extract fault feature of bearing. The result of simulation and experiment analysis verifies the validity of the method.
作者 潘宏达 王强 石红霞 崔斌 汪欣 PAN Hongda WANG Qiang SHI Hongxia CUI Bin WANG Xin(Comprehensive Training Base, Military Transportation University, Tianjin 300161, China Postgraduate Training Brigade, Ordnance Engineering College, Shijiazhuang 050001, China Military Logistics Department, Military Transportation University, Tianjin 300161, China)
出处 《军事交通学院学报》 2017年第3期38-42,共5页 Journal of Military Transportation University
关键词 集合经验模式分解 Teager能量谱 轴承故障特征提取 ensemble empirical mode decomposition (EEMD) Teager energy spectrum fault feature extraction
  • 相关文献

参考文献9

二级参考文献104

共引文献480

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部