期刊文献+

GPM双频降水测量雷达对降雪的探测能力分析 被引量:11

Study of GPM Dual-Frequency Radar in Detecting Snow
下载PDF
导出
摘要 以双频降水测量雷达为主载荷的GPM卫星于2014年2月发射升空。由于轨道倾角以及仪器通道的设置,大大提升了对弱降水和降雪的探测能力。通过四次降雪个例,分析比较了双频降水测量雷达的三种扫描模式(Ku,KaMS和KaHs)对降雪探测能力的差异。结果表明:DPR相态产品和地面实际观测结果比较一致,固态降雪温度<-0.5℃并且降雪发生时的风暴顶高度大多<6 km。Ku波段雷达由于仪器灵敏度的大幅提高.对降雪的综合探测能力最强,而KaMs和KaHS也具有特定的作用。此外,为了保证衰减订正的精度,和非降雪部分的衰减相比,需要主要提高降雪衰减尤其是混合相态湿雪的衰减订正精度。 The Global Precipitation Measurement (GPM) mission core observatory was launched in Febru ary 2014, carrying the dual-frequency precipitation radar (DPR). The DPR consists of two radars with microwave frequencies of Ka and Ku bands. DPR is expected to extend its ability to capture weak rain and snow in higher latitudes. In order to evaluate the ability of DPR in snow detection, four cases are ana- lyzed. As a result, particle phase products of DPR are consistence with the actual weather condition and the temperature of solid snow is lower than -0.5℃. What's more, the heights of most storm tops are lower than 6 km. By comparison, actual Ku-band radar detectability turns out to outperform the Ka band radar in identifying the existence of snow because of an obvious improvement of sensitivity. KaMS and KartS are also useful. In order to improve snow retrieval, the attenuation correction of snow is very important, especially for wet snow.
出处 《气象》 CSCD 北大核心 2017年第3期348-353,共6页 Meteorological Monthly
基金 国家自然科学基金项目(41475030 61527805) 北京市自然科学基金(8172022)共同资助
关键词 GPM 双频降水测量雷达 降雪探测 粒子相态 路径衰减 Global Precipitation Measurement (GPM), dual-frequency precipitation radar (DPR), snow detection, particle phase, path attenuation
  • 相关文献

参考文献3

二级参考文献78

  • 1吴雪娇,杨梅学,吴洪波,吴玉伟,王学佳.TRMM多卫星降水数据在黑河流域的验证与应用[J].冰川冻土,2013,35(2):310-319. 被引量:30
  • 2王新华,罗四维,刘小宁,任芝花,孙化南.国家级地面自动站A文件质量控制方法及软件开发[J].气象,2006,32(3):107-112. 被引量:77
  • 3王绍武,黄建斌.近千年中国东部夏季雨带位置的变化[J].气候变化研究进展,2006,2(3):117-121. 被引量:18
  • 4任芝花,熊安元.地面自动站观测资料三级质量控制业务系统的研制[J].气象,2007,33(1):19-24. 被引量:128
  • 5Adler R F, Kummerow C, Bolvin D, et al. Status of TRMM monthly estimates of tropical precipitation. Cloud Systems, Hurricanes, and TRMM[J]. Meteor Monogr, Amer. Meteor. Soc., 2003, 51: 223-234.
  • 6Chiu L, Vongsaard J, Morain S, et al. Comparison of TRMM and water division rain rates over New Mexico[J]. Adv Atmos Sci, 2006, 23: 1-13.
  • 7Chiu L, Shin D-B, and Kwaiktowski J. 2006c: Surface rain rate from TRMM algorithms. Earth Science Satellite Remote Sensing I[M]. J. Qu et al. , Eds. , Springer and Tsinghua University Press, 2006 : 317-336.
  • 8Nicholson S E, and Coauthors. Validation of TRMM and other rainfall estimates with a high-density gauge dataset for West Africa. Part I: Validation of GPCC rainfall product and pre-TRMM satellite and blended products[J]. J Appl Meteor, 2003, 42: 1337-1354.
  • 9Nicholson S E, and Coauthors. Validation of TRMM and other rainfall estimates with a high-density gauge dataset for West Africa. Part II: Validation of TRMM rainfall products[J]. J Appl Meteor, 2003, 42:1355 -1368.
  • 10Brown J E M. An analysis of the performance of hybrid infrared and microwave satellite precipitation algorithms over India and adjacent regions[J]. Remote Sens Environ, 2006, 101: 63-81.

共引文献124

同被引文献101

引证文献11

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部