摘要
模型评价(模型选择)是地下水数值模拟不确定分析的重要研究内容,模型边缘似然值是进行模型评价的重要依据。嵌套抽样算法是一种高效的高维积分计算方法,能有效计算复杂模型的边缘似然值。本次研究提出了一种基于Adaptive Metropolis的嵌套抽样算法,通过对两个(线性、非线性)解析函数及一组不同结构的地下水模型边缘似然值的计算,并与大样本条件下算术平均方法的计算结果相对比,验证了该方法对于计算模型边缘似然值的有效性。
The model evaluation( model selection) is an important research content of uncertainty analysis of groundwater numerical simulation, and marginal likelihood of a model is an essential basis for model evaluation. Nested sampling algorithm is an efficient high-dimensional integral method,which can effectively calculate the marginal likelihood of complex model. The nested sampling algorithm based on Adaptive Metropolis was proposed in this study,by calculating the marginal likelihoods of two( linear,non-linear)analytic functions and a set of groundwater models with different structures,and compared with the results of the arithmetic average method under the condition of large sample,the validity of the method was verified. The results show that the nested sampling algorithm has high calculation accuracy and computational efficiency,and is an effective model evaluation method.
出处
《水文地质工程地质》
CAS
CSCD
北大核心
2017年第2期69-76,共8页
Hydrogeology & Engineering Geology
基金
国家自然科学基金项目资助(41302181
41172207
51190091)
国家重点研发计划"水资源高效开发利用"重点专项项目资助(2016YFC0402802)
关键词
嵌套抽样算法
模型评价
模型选择
地下水流模型
边缘似然值
nested sampling algorithm
model evaluation
model selection
groundwater flow model
marginal likelihood