期刊文献+

核电用304L奥氏体不锈钢等离子体源渗氮 被引量:1

Plasma source nitriding of 304L austenitic stainless steel for nuclear power plant
原文传递
导出
摘要 对核电用304L奥氏体不锈钢进行450℃×6 h等离子体源渗氮处理,对比研究了渗氮前后改性层的组织与性能。结果表明:304L奥氏体不锈钢渗氮后,表面获得了厚度约为15μm,峰值氮浓度可达25at%的单一面心结构的γ_Ν相改性层,其最大显微硬度高达1320 HV0.025,干摩擦条件下,γ_Ν相改性层的磨损体积由原始不锈钢的0.102 mm^3降低至9.26×10^(-3)mm^3,磨损机制由黏着磨损转变为氧化磨损,耐磨性能显著提高。在3.5%Na Cl溶液和p H=8.4硼酸溶液中,γ_Ν相改性层的自腐蚀电位比原始不锈钢分别提高了323 m V和75 m V,耐蚀性能明显改善。 304L austenitic stainless steel for nuclear power plant was plasma source nitrided at 450 ℃ for 6 h,and microstructure and properties of the modified layer before and after nitriding were studied. The results show that a single high-nitrogen face-centered-cubic phase( γ_Ν) with a thickness of 15 μm and the peak nitrogen concentration of about 25at% is formed on the 304 L austenitic stainless steel surface,and has the highest microhardness about 1320 HV0. 025. The wear mechanism of the γ_Ν phase layer changes from the adhesive wear corresponding original stainless steel to oxidative wear in dry friction condition. The increased wear resistance of the γ_Ν phase layer is obtained with a decrease wear volume from 0. 102 mm^3 of original stainless steel to 9. 26 × 10(- 3)mm3. Compared with the original stainless steel,the self-corrosion potential of the γ_Ν phase layer in 3. 5% Na Cl solution and in boric acid solution with p H 8. 4 increase 323 m V and75 m V,respectively. The corrosion resistance of the γ_Ν phase layer is improved in comparison with that of original stainless steel.
作者 李广宇
出处 《金属热处理》 CAS CSCD 北大核心 2017年第3期65-69,共5页 Heat Treatment of Metals
基金 营口理工学院科研基金(QNL201510)
关键词 等离子体源渗氮 304L奥氏体不锈钢 γΝ相 硬度 耐磨性能 抗蚀性能 plasma source nitriding 304L austenitic stainless steel γΝ phase microhardness wear resistance corrosion resistance
  • 相关文献

参考文献2

二级参考文献31

  • 1Macdonald D D, Scott A C, Wentrcek P. J Electrochem Soc, 1979; 126: 1618.
  • 2Macdonald D D, Liu C, Michael M P. In: Kearns J R, Scully J R, eds., Electrochemical Noise Measurements on Carbon and Stainless Steel in High Subcritical and Supercritical Aqueous Environments. ASTM STP 1277, 1996: 247.
  • 3Lvov S N, Zhou X Y, Macdonald D D. J Electroanal Chem, 1999; 463: 146.
  • 4Zhou X Y, Lvov S N, Wei X J, Benning L G, Macdonald D D. Corros Sci, 2002; 44: 841.
  • 5张丽, 韩恩厚, 柯伟, 关辉. 中国专利, ZL 02132544.8, 2005.
  • 6张丽, 韩恩厚, 柯伟, 关辉. 中国实用新型专利, ZL 02274025.2, 2003.
  • 7关辉, 张丽, 韩恩厚, 柯伟. 中国实用新型专利, ZL 02274026.0, 2003.
  • 8孙华, 吴欣强, 韩恩厚. 中国专利, CN101470093, 2009.
  • 9孙华, 吴欣强, 韩恩厚. 中国专利, CN101470094, 2009.
  • 10Pourbaix M. Atlas of Electrochemical Equilibria in Aqueous Solutions. Houston: NACE International, 1974: 121.

共引文献73

同被引文献3

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部