期刊文献+

一种求解非线性规划问题的粒子群算法 被引量:3

Particle Swarm Algorithm of the Nonlinear Programming Problem
下载PDF
导出
摘要 为了求解非线性混合整数规划问题,提出了一种基于随机游走的粒子群优化算法(RWPSO).构造出自适应的惯性权重,平衡了算法的全局和局部搜索能力;提出了一种"随机游走"行为,增强粒子的局部寻优能力;为了防止算法出现早熟收敛现象,提出了"优胜劣汰"更新机制.最后,为了验证算法在求解非线性混合整数规划问题方面的可行性和有效性,将提出的算法用16个常用的测试函数进行了测试并与其他3种算法比较.实验结果表明,RWPSO算法在精确度和成功率方面得到了很大的提高. A particle swarm optimization based on random walk(RWPSO)is proposed to solve nonlinear mixed integer programming problem.To balance local search capability and global search capability,selfadaptive inertia weight is constructed.A "random walk"behavior is proposed to enhance the local search ability of particles.In order to prevent premature convergence,the "survival of the fittest"update mechanism is introduced.Finally,in order to validate the algorithm is feasible and effective for solving nonlinear mixed integer programming problem,RWPSO is tested and compared with the other three algorithms in 16 test functions.The experimental study shows that RWPSO has been greatly improved in terms of accuracy and success rate.
作者 赵佳鑫 高岳林 陈群林 Zhao Jiaxin Gao Yuelin Chen Qunlin(School of Mathematics and Information Science, Beifang University of Nationalities, Yinchuan 750021, China Institute of Information and System Computation Science, Beifang University of Nationalities, Yinchuan 750021, China)
出处 《宁夏大学学报(自然科学版)》 CAS 2017年第1期15-18,22,共5页 Journal of Ningxia University(Natural Science Edition)
基金 国家自然科学基金资助项目(61561001) 北方民族大学研究生创新项目(YCX1547)
关键词 粒子群算法 非线性混合整数规划 随机游走 particle swarm optimization nonlinear mixed integer programming random walk
  • 相关文献

参考文献3

二级参考文献44

  • 1Grossmann I E, Sahinidis N V. Special issue on mixed integer programming and it's application to engineering, Optim. Eng, 3(4)[M]. Kluwer Academic Publishers, Netherlands, 2002.
  • 2Sandgren E. Nonlinear integer and discrete programming in mechanical design[J]. ASME Journal Mechanical Design, 1990,112(2):223-229.
  • 3Kannan B K, Kramer S N. An augmented lag range multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design[J]. Journal of Mechanical Design. Transactions on the ASME, 1994,116 (2): 318-320.
  • 4Cao Y J, Wu Q H. Mechanical design optimization by mixedvariable evolutionary programming [C]. Proc of the 1997 Int'l Conf on Evolutionary Computation. Indianapolis: IEEE Press,1997:443-446.
  • 5Yung Chien lin. A hybrid method of evolutionary algorithms for mixed-integer nonlinear optimization problem [C]. Proc of Congress on Evolutionary Computation, Piscataway, NJ: IEEE Press, 1999: 2159-2166.
  • 6Carlos A, Cello Cello. Self-adaptive penalties for GA-based optimization[C]. Proc of the Congress on Evolutionary Computation, Washington: IEEE Press, 1999: 537-580.
  • 7Floudas C A, Aggarwal A, Ciric A R. Global optimum search for nonconvex NLP and MINLP problems [J]. Computers & Chemical Engineering,1989,13 (10) :1117-1132.
  • 8Ryoo H S, Sahinidis B P. Global optimization of non-convex NLPs and MINLPs with application in process design[J]. Computers & Chemical Engineering, 1995,19: 551.
  • 9Costa L, Olivera P. Evolutionary algorithms approach to the solution of mixed integer nonlinear programming problems [J].Computers & Chemical Engineering, 2001,25 : 257-266.
  • 10Cardoso M F, Salcedo R L, Feyo S de Azevedo. A simulated annealing approach to the solution of MINLP problems [J].Computers & Chemical Engineering, 1997,21:1349-1364.

共引文献40

同被引文献12

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部