期刊文献+

时间尺度上的高阶Hopfield神经网络的概周期解

Almost periodic solution of high-order Hopfield neural networks on time scales
下载PDF
导出
摘要 研究了时间尺度上带有连接项和分布时滞的Hopfield神经网络的概周期解.利用时间尺度上动力系统的指数二分性和Banach不动点定理,给出了系统存在唯一的概周期解的充分条件,即系统在满足(H_1)^(H_4)的条件下,进一步假设α<1成立,则系统有唯一的概周期解.这个结果在很大程度上推广和延伸了以前的相关结果. In this paper, almost periodic solution of high-order Hopfield neural networks with leakage term and distributed delays on times scales is proposed. By applying the exponential dichotomy of linear dynamic system and Banach' s fixed point theorem on time scales, some sufficient conditions for unique almost periodic solution of this sys- tem are obtained : suppose that the condition (H1) - (H4 ) are fulfilled and further assume that a 〈 1 is satisfied, then there is an unique almost periodic solution for this system. This result improves and extends the ones in the previous works to a large extent.
作者 丁彦林 庞一成 李永昆 DING Yan-lin PANG Yi-cheng LI Yong-kun(Mathematics and Statistics Department, Guizhou University of Finance and Economics, Guiyang 550025, China Mathematics and Statistics Department, Yunnan University, Kunming 650091, China)
出处 《南阳师范学院学报》 CAS 2017年第3期8-11,共4页 Journal of Nanyang Normal University
基金 国家自然科学基金(11526063) 贵州省科学技术基金(黔科合J字[2015]2026号) 贵州省教育厅自然科学研究项目(黔教合KY[2015]482)
关键词 概周期解 高阶Hopfield神经网络 连接项 分布时滞 almost periodic solution high-order Hopfield neural networks leakage term distributed delay
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部