摘要
研究了时间尺度上带有连接项和分布时滞的Hopfield神经网络的概周期解.利用时间尺度上动力系统的指数二分性和Banach不动点定理,给出了系统存在唯一的概周期解的充分条件,即系统在满足(H_1)^(H_4)的条件下,进一步假设α<1成立,则系统有唯一的概周期解.这个结果在很大程度上推广和延伸了以前的相关结果.
In this paper, almost periodic solution of high-order Hopfield neural networks with leakage term and distributed delays on times scales is proposed. By applying the exponential dichotomy of linear dynamic system and Banach' s fixed point theorem on time scales, some sufficient conditions for unique almost periodic solution of this sys- tem are obtained : suppose that the condition (H1) - (H4 ) are fulfilled and further assume that a 〈 1 is satisfied, then there is an unique almost periodic solution for this system. This result improves and extends the ones in the previous works to a large extent.
作者
丁彦林
庞一成
李永昆
DING Yan-lin PANG Yi-cheng LI Yong-kun(Mathematics and Statistics Department, Guizhou University of Finance and Economics, Guiyang 550025, China Mathematics and Statistics Department, Yunnan University, Kunming 650091, China)
出处
《南阳师范学院学报》
CAS
2017年第3期8-11,共4页
Journal of Nanyang Normal University
基金
国家自然科学基金(11526063)
贵州省科学技术基金(黔科合J字[2015]2026号)
贵州省教育厅自然科学研究项目(黔教合KY[2015]482)