期刊文献+

妊娠子痫前期患者血清代谢轮廓分析 被引量:4

Analysis of serum metabolic profiling of preeclampsia pregnancy
原文传递
导出
摘要 目的研究妊娠子痫前期患者血清代谢轮廓的变化,建立疾病区分模型并筛选出具有潜在临床诊断价值的特征代谢物。方法病例对照研究。收集2014年8月至2016年1月天津市第三中心医院产科住院确诊的31例子痫前期患者和25名正常妊娠分娩者及29名同期健康体检育龄女性,应用超高效液相色谱与质谱联用仪(UPLC-MS)分别对3组血清样本进行分析,采用基于模式识别的多元统计学方法对实验数据进行分析并对筛选出的差异性特征代谢物变化趋势进行分析。结果构建了妊娠子痫组血清代谢轮廓主成分分析模型及正交偏最小二乘判别模型,同时从模型中筛选并鉴定15种相比对照组在子痫患者血清中存在差异的特征代谢物,其中8种甘油磷脂类物质(包括7种溶血磷脂酰胆碱及1种溶血磷脂酸)及1种鞘磷脂类物质(植物鞘氨醇)在子痫前期组血清相对含量对比正常妊娠组之间有相同变化趋势,差异有统计学意义(Z值分别为2.32、3.34、3.21、2.60、2.22、3.40、3.58、5.84、2.70, P均〈0.05)。子痫前期组中1,25-二羟基-D3-26.23内酯和24-氧代-1-α,23,25二羟基维生素D3的相对含量明显低于正常妊娠组及对照组,差异具有统计学意义(Z值分别为2.01、3.89、3.26、2.34,P均〈0.05)。结论构建代谢轮廓判别模型具有很强的区分子痫前期患者与正常妊娠及健康育龄妇女的能力,筛选出特征代谢物能够早期反映子痫前期患者脂、钙磷代谢的状态,为子痫患者的预测、诊治等提供参考和帮助。(中华检验医学杂志,2017, 40:186-190) Objectives This research explored the characteristics of changes in the serum metabolic profile of preeclampsia pregnancy(PE) to establish the disease distinguish model and screen characteristic metabolic markers with potential diagnostic value for preeclampsia. Methods From August 2014 to January 2016, samples in three groups were collected at Tianjin Third Central Hospital. Thirty-one clinically diagnosis patients with preeclampsia, 25 normal pregnancy women and 29 healthy volunteers of childbearing age were enrolled. Ultraperformance liquid chromatography-mass spectrometry (UPLC-MS) was used to analyze serum metabolites of PE group (31 patients with preeclampsia), P group (25 normal pregnancy women) and Normal group (29 healthy volunteers of childbearing age) . Nonparametric test analyzes were used to analyze the data and find the specific metabolites. Results This research established the principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) disease distinguish model for PE group, P group and Normal group. To distinguish PE group, P group and Normal group, 15 characteristic metabolites were identified. Eight kinds of glycerol phospholipid ( including 7 kinds of hemolysis phosphatidyl choline and 1 kind of lysophospholipids acid) and 1 kind of sphingomyelin in PE group were higher than that of normal pregnancy group. The difference had statistically significant(Z of the metabolites were 2. 32, 3.34, 3.21,2. 60, 2. 22, 3.40, 3.58, 5.84, 2.70 respectively,all P 〈 0.05). 1, 25-Dihydroxyvitamin D3-26,23-1actone and 24-Oxo-lalpha, 23,25-trihydroxyvitamin D3 in PE group were higher than that of P group and Normal group, which had a statistics difference ( Z of the metabolites were 2.01, 3.89, 3.26, 2. 34 respectively, all P 〈 0. 05 ). Conclusions Metabolomics distinguish model has a good ability to distinguish PE group, P group and Normal group. Serum characteristic metabolites can successfully reflect the status of fat, calcium and phosphorus metabolism of preeclampsia patients and provide high value for prediction, diagnosis and treatment. ( Chin J Lab Med, 2017, ,40: 186-190)
出处 《中华检验医学杂志》 CAS CSCD 北大核心 2017年第3期186-190,共5页 Chinese Journal of Laboratory Medicine
基金 天津市自然科学基金青年项目(16JCQNJC11600)
关键词 先兆子痫 代谢组学 溶血磷脂酰胆碱类 鞘磷脂类 Pre-eclampsia Metabolomics Lysophosphatidylcholines Sphingomyelins
  • 相关文献

参考文献3

二级参考文献93

  • 1Nicholson JK, Lindon JC, Holmes E. 'Metabonomics': Understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 1999;29:1181-9.
  • 2Illig T, Gieger C, Zhai G, Romisch-Margl W, Wang-Sattler R, Prehn C, et al. A genome-wide perspective of genetic variation in human metabolism. Nat Genet 2010;42:137-41.
  • 3Kaddurah-Daouk R, Kristal BS, Weinshilboum RM. Metabolomics: A global biochemical approach to drug response and disease. Annu Rev Pharmacol ToxicoI2008;48:653-83.
  • 4Han X, M Holtzman D, McKeel DW Jr, Kelley J, Morris JC. Substantial sulfatide deficiency and ceramide elevation in very early Alzheimer's disease: Potential role in disease pathogenesis. J Neurochem 2002;82:809-18.
  • 5Bogdanov M, Matson WR, Wang L, Matson T, Saunders-Pullman R, Bressman SS, et al. Metabolomic profiling to develop blood biomarkers for Parkinson's disease. Brain 2008;131:389-96.
  • 6Sabatine MS, Liu E, Morrow DA, Heller E, McCarroll R, Wiegand R, et al. Metabolomic identification of novel biomarkers of myocardial ischemia. Circulation 2005;112:3868-75.
  • 7Brindle JT, Nicholson JK, Schofield PM, Grainger DJ, Holmes E. Application of chemometrics to IH NMR spectroscopic data to investigate a relationship between human serum metabolic profiles and hypertension. Analyst 2003;128:32-6.
  • 8Yang J, Xu G, Zheng Y, Kong H, Pang T, Lv S, et al. Diagnosis of liver cancer using HPLC-based metabonomics avoiding false-positive result from hepatitis and hepatocirrhosis diseases. J Chromatogr B Analyt Technol Biomed Life Sci 2004;813:59-65.
  • 9Wang C, Kong H, Guan Y, Yang J, Gu J, Yang S, et at. Plasma phospholipid metabolic profiling and biomarkers of type 2 diabetes mellitus based on high-performance liquid chromatography/ electrospray mass spectrometry and multivariate statistical analysis. Anal Chern 2005;77:4108-16.
  • 10Yuan K, Kong H, Guan Y, Yang J, Xu G. A GC-based metabonomics investigation of type 2 diabetes by organic acids metabolic profile. J Chromatogr B Analyt Technol Biomed Life Sci 2007;850:236-40.

共引文献1237

同被引文献38

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部