期刊文献+

带有临界型非线性项的强阻尼波动方程的整体吸引子 被引量:2

Global Attractors of Strongly Damped Wave Equations with Critical Nonlinearities
原文传递
导出
摘要 本文研究一类带有临界型非线性项的强阻尼波动方程.当指数1/2<θ<1时,利用能量泛函的性质,我们证明了由方程导出的C_0半群T(t)的紧性和耗散性,以及整体吸引子的存在性.当θ=1时,利用磨光与逼近,我们研究了磨光半群T_v(t)随t→∞时的一致渐近行为,以及它们在任意有界区间上强收敛到T(t)的一致性,并把T(t)的整体吸引子表示为磨光半群T_v(t)整体吸引子的上半极限. This paper deals with a class of strongly damped wave equations u tt+η(- △) θut+ (-△)u = f(u) with critical nonlinearities. The main task is to prove the existence of the global attractor of C0-semigroup T(t) derived by the wave equation for critical growth indicator ρ = (N + 2)/(N - 2) under Lipshitz and dissipative conditions. In case 1/2 〈 θ ≤ 1, by studying the energy functional attached to T(t), we prove that, every bounded subset of the energy space is absorbed uniformly by a bounded set B0 independent of the index θ, which combined with the compactness of T(t), leads to the existence of the global attractor. And in case θ = 1, the method of modification and approximation are adopted. We show that all the modified semigroups Tv(t)(v ∈ (0, 1]) exhibit the same asymptotic behavior as t → ∞, and they converge to T(t) in strong topology uniformly on bounded intervals as v →∞. Based on these properties, we prove the existence of the global attractor, which can be represented by the upper limit of attractors of modified semigroups.
作者 张庆华 李刚
出处 《应用数学学报》 CSCD 北大核心 2017年第2期192-203,共12页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(11271316) 江苏省自然科学基金(BK20161278)资助项目
关键词 负拉普拉斯算子 强阻尼 波动方程 临界型非线性项 能量泛函 整体吸引子 negative Laplacian strong damping wave equation critical nonlinearity energy functional global attractor
  • 相关文献

参考文献1

共引文献1

同被引文献8

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部