期刊文献+

堆芯熔融下反应堆压力容器结构失效模式探讨 被引量:2

Study on Structural Failure Mode of Reactor Pressure Vessel Under Severe Core Meltdown Accident
下载PDF
导出
摘要 利用有限元方法分析了堆芯熔融严重事故下反应堆压力容器(RPV)器壁的应力分布,探讨了RPV结构的失效模式,提出了RPV结构分层失效模型,可将RPV沿壁厚由内到外分为5个层面,即熔化区、高温蠕变主导区、压缩塑性主导区、弹性区和拉伸塑性区.分析了RPV塑性失效和高温蠕变失效的影响因素,并给出了塑性失效和高温蠕变失效的载荷条件.结果表明:内压是塑性失效的主要影响因素,随着内压增大,RPV壁内弹性层会逐渐减小,弹性层消失时对应的内压即为塑性失效的载荷条件;在蠕变条件下,当内压达到一定值后,截面塑性区、蠕变应变和塑性应变迅速增大,RPV达到极限状态,此时的内压即为高温蠕变失效的载荷条件. To evaluate the structural integrity of a reactor pressure vessel (RPV) bearing complicated and dangerous loads under severe core meltdown accident, various analyses were conducted, including an analysis on the stress distribution across the RPV wall using finite element method, and a study on the failure mode with a multi-layered failure model proposed, suggesting that the RPV wall could be divided into five layers from inner to outer wall along its thickness, namely, molten layer, high-temperature creep dominated layer, compressed plastic dominated layer, elastic layer, and tensile plastic layer, etc. Meanwhile, factors influencing the plastic failure and high-temperature creep failure of RPV were analyzed, during which load conditions of both the failures were obtained. Results show that the internal pressure is the main factor affecting the RPV plastic failure. With the rise of internal pressure, the elastic layer in RPV wall gradually reduces, and when the elastic layer disappears, the corresponding internal pressure is considered as the load condition of plastic failure. Whereas, under creep conditions, once the internal pressure gets up to a certain value, the plastic layer, the creep strain and the plastic strain on RPV wall cross section increases rapidly, and the RPV promptly reaches its limit state, when the corresponding internal pressure is considered as the load condition of high-temperature creep failure.
出处 《动力工程学报》 CAS CSCD 北大核心 2017年第4期335-340,共6页 Journal of Chinese Society of Power Engineering
基金 国家自然科学基金资助项目(51575489,51505425) 浙江省公益类重点资助项目(2014C23001) 湖州市自然科学基金资助项目(2014YZ03) 浙江省教育厅一般科研资助项目(Y201636414)
关键词 反应堆压力容器 堆内滞留 塑性失效 高温蠕变失效 失效模式 reactor pressure vessel in-vessel retention plastic failure high-temperature creep failure failure mode
  • 相关文献

参考文献5

二级参考文献40

  • 1刘彤,徐钢,庞力平,梁志福.锅炉炉内承压部件的蠕变分析及寿命计算[J].动力工程,2004,24(5):631-635. 被引量:12
  • 2蔡连元,李益民,史志刚,闫建滨,王大光,桂立澄.P91主蒸汽管道焊接接头的蠕变特性和寿命估算[J].动力工程,2007,27(3):469-472. 被引量:5
  • 3Sehgal B R, Theerthan A, Giri A, et al. Assessment of reactor vessel integrity (ARVI)[J]. Nuclear Engineering and Design, 2003, 221(1-3): 23-53.
  • 4姚伟达,谢永诚,贺寅彪,等.第三代非能动型与第四代超临界先进轻水型核电厂中典型的力学问题[C].第14届全国反应堆结构力学会议论文集,2006.
  • 5ASME锅炉及压力容器规范[S].第Ⅲ卷,核电厂设备建造准则,第1册,NH分卷,高温1级部件,2004.
  • 6Sehgal B R, Nourgaliev R R, Dinh T N. Characterization of heat transfer processes in a melt pool convection and vessel-creep experiment[J]. Nuclear Engineering and Design, 2002, 211(2-3): 173-187.
  • 7Devos J, Catherine C S, Poette C, et al. CEA programme to model the failure of the lower head in severe accidents[J]. Nuclear Engineering and Design, 1999, 191(1): 3-15.
  • 8Thinnes G L, Korth G E, Chavez S A, et al. High-temperature creep and tensile data for pressure vessel steels SA533B1 and SA508-CL2[J]. Nuclear Engineering and Design, 1994, 148(2-3): 343-350.
  • 9Willschtitz H G, Altstadt E, Sehgal B R, et al. Coupled thermal structural analysis of LWR vessel creep failure experiments[J]. Nuclear Engineering and Design, 2001, 208(3): 265-282.
  • 10Pilch M M, Ludwigsen J S, Chu T Y, et al. Creep failure of a reactor pressure vessel lower head under severe accident conditions[C]. ASME/JSME joint pressure vessel and piping (PVP) conference, 1998.

共引文献42

同被引文献15

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部