期刊文献+

Increased Light, Moderate, and Severe Clear-Air Turbulence in Response to Climate Change 被引量:10

Increased Light,Moderate,and Severe Clear-Air Turbulence in Response to Climate Change
下载PDF
导出
摘要 Anthropogenic climate change is expected to strengthen the vertical wind shears at aircraft cruising altitudes within the atmospheric jet streams. Such a strengthening would increase the prevalence of the shear instabilities that generate clear-air turbulence. Climate modelling studies have indicated that the amount of moderate-or-greater clear-air turbulence on transatlantic flight routes in winter will increase significantly in future as the climate changes. However,the individual responses of light,moderate,and severe clear-air turbulence have not previously been studied,despite their importance for aircraft operations. Here,we use climate model simulations to analyse the transatlantic wintertime clear-air turbulence response to climate change in five aviation-relevant turbulence strength categories. We find that the probability distributions for an ensemble of 21 clear-air turbulence diagnostics generally gain probability in their right-hand tails when the atmospheric carbon dioxide concentration is doubled. By converting the diagnostics into eddy dissipation rates,we find that the ensembleaverage airspace volume containing light clear-air turbulence increases by 59%(with an intra-ensemble range of 43%–68%),light-to-moderate by 75%(39%–96%),moderate by 94%(37%–118%),moderate-to-severe by 127%(30%–170%),and severe by 149%(36%–188%). These results suggest that the prevalence of transatlantic wintertime clear-air turbulence will increase significantly in all aviation-relevant strength categories as the climate changes. Anthropogenic climate change is expected to strengthen the vertical wind shears at aircraft cruising altitudes within the atmospheric jet streams. Such a strengthening would increase the prevalence of the shear instabilities that generate clear-air turbulence. Climate modelling studies have indicated that the amount of moderate-or-greater clear-air turbulence on transatlantic flight routes in winter will increase significantly in future as the climate changes. However,the individual responses of light,moderate,and severe clear-air turbulence have not previously been studied,despite their importance for aircraft operations. Here,we use climate model simulations to analyse the transatlantic wintertime clear-air turbulence response to climate change in five aviation-relevant turbulence strength categories. We find that the probability distributions for an ensemble of 21 clear-air turbulence diagnostics generally gain probability in their right-hand tails when the atmospheric carbon dioxide concentration is doubled. By converting the diagnostics into eddy dissipation rates,we find that the ensembleaverage airspace volume containing light clear-air turbulence increases by 59%(with an intra-ensemble range of 43%–68%),light-to-moderate by 75%(39%–96%),moderate by 94%(37%–118%),moderate-to-severe by 127%(30%–170%),and severe by 149%(36%–188%). These results suggest that the prevalence of transatlantic wintertime clear-air turbulence will increase significantly in all aviation-relevant strength categories as the climate changes.
出处 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2017年第5期576-586,共11页 大气科学进展(英文版)
基金 financially supported through a University Research Fellowship from the Royal Society (reference UF130571)
关键词 TURBULENCE climate change AVIATION jet stream turbulence climate change aviation jet stream
  • 相关文献

同被引文献34

引证文献10

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部