期刊文献+

Levy噪声驱动下指数型单稳系统的随机共振特性分析 被引量:11

Characteristic Analysis of Exponential Type Monostable Stochastic Resonance under Levy Noise
下载PDF
导出
摘要 该文基于绝对值型和指数型势函数,构建了更一般的指数型单稳势函数,深入研究了Levy噪声驱动的指数型单稳系统,并总结出不同特征指数a和不同对称参数b下,指数型系统参数l和b,Levy噪声强度系数D对指数系统共振输出的作用规律。研究表明:在不同Levy噪声驱动下,通过调节参数l和b均可诱导随机共振(SR),且当b(或l)的取值越大时,产生较好随机共振效果l(或b)的区间越大,从而改善传统SR系统由于参数选择不当造成随机共振效果不佳的问题。此外,通过调节噪声强度系数D也能产生随机共振,且较好随机共振区间不随a或b变化;最后将指数型单稳系统应用于轴承故障检测,效果明显优于传统双稳系统。 Based on the absolute and exponential monostable potential, a generalized exponential type single-well potential function is constructed. The laws for the resonant output of monostable system governed by l and b, D of Levy noise are explored under different characteristic index a and symmetry parameter of Levy noise. The results show that the stochastic resonance phenomenon can be induced by adjusting the exponential type parameters l and b under any a or β of Levy noise. The larger b (or l) is, the wider parameter interval of 1 (or b) can induce SR (Stochastic Resonance). The ESR (Exponential SR) system can solve the problem that the traditional system can not achieve SR due to the improper selection of parameters. The interval of D of Levy noise which induces good stochastic resonance, does not change with a or β. At last, the proposed exponential type monostable is applicated to detect bearing fault signals, which achieves better performance compared with the traditional bisabled system.
出处 《电子与信息学报》 EI CSCD 北大核心 2017年第4期893-900,共8页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61371164) 重庆市杰出青年基金(CSTC2011jjjq40002) 重庆市教育委员会科研项目(KJ130524)~~
关键词 指数型单稳系统 Levy噪声 随机共振 轴承故障检测 Exponential type monostable system Levy noise Stochastic Resonance (SR) Bearing fault detection
  • 相关文献

参考文献6

二级参考文献74

  • 1杨定新,胡茑庆,杨银刚,温熙森.随机共振技术在齿轮箱故障检测中的应用[J].振动工程学报,2004,17(2):201-204. 被引量:15
  • 2卢志恒,林建恒,胡岗.随机共振问题Fokker-Planck方程的数值研究[J].物理学报,1993,42(10):1556-1566. 被引量:21
  • 3朱位秋.随机振动[M].北京:科学出版社,1998..
  • 4Ye Qinghua,Huang Haining,He Xinyi,et al..Improved bearing estimates of weak signals using stochastic resonance and frequency shift techniques",OCEANS 2003.San Diego,Calif.Sept.25th,2003.vol 5:2410-2413.
  • 5Collins J J,Chow C,Capela A C,et al..Aperiodic stochastic resonance.Physical Review E,1996,53(4):5575-5583.
  • 6Collins J J,Chow C,Imhoff T T.Aperiodic stochastic resonance in excitable systems.Physical Review E,1995,52(4):3321-3324.
  • 7Henegham C,Chow C C,Collins J J,et al..Information measures quantifying aperiodic stochastic resonance.Physical Review E,1996,54(3):2228-2231.
  • 8李荣华,刘播.微分方程数值解法(第四版).北京:高等教育出版社,2009.
  • 9BENZI R, SUTERA A, VULPIANI A. The mechanism of stochastic resonance[J]. Physical A, Mathematical and General, 1981, 14(11). 453-457.
  • 10] FAUVE S, HESLOR F. Stochastic resonance in a bistable system[J]. Physical Letters A, 1983, 97(1): 5-7.

共引文献59

同被引文献84

引证文献11

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部