期刊文献+

基于似然损失函数的组样本排序学习方法 被引量:1

Group Sample Learning to Rank Approach Based on Likelihood Loss Function
下载PDF
导出
摘要 组样本用于模型训练,为排序学习方法的构造提供一种新的思路.文中改进已有的组样本排序学习方法,构造组样本损失函数,用于排序学习模型的训练.基于似然损失函数,采用样本偏序权重损失函数和最优初始序列选择方法,构造基于神经网络的组排序学习方法,实验证明文中方法能够有效提高排序准确率. Group sample used for training the ranking model provides a new idea to construct learning to rank methods. In this paper, the new loss function is constructed for group samples to train the learning to rank model. The preference-weighted loss function and the initial ranking list optimization are employed to construct a new group learning to rank method based on neural network. Experimental results show that the proposed approach is effective in improving ranking performance.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2017年第3期235-241,共7页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.61602078 61572102 61402075 61277370) 中国博士后科学基金项目(No.2016T90224 2015M581337) 中央高校基本科研业务费专项资金(No.DUT15RW401)资助~~
关键词 组样本 信息检索 排序学习 Group Sample, Information Retrieval, Learning to Rank
  • 相关文献

参考文献3

二级参考文献37

  • 1Duh K,Kirchhoff K.Learning to Rank with Partially-Labeled Data//Proc of the31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.Singapore,Singapore,2008:251-258.
  • 2Broder A.A Taxonomy of Web Search.ACM SIGIR Forum,2002,36(2):3-10.
  • 3Rose D E,Levinson D.Understanding User Goals in Web Search//Proc of the13th International Conference on World Wide Web.New York,USA,2004:13-19.
  • 4Gravano L,Hatzivassiloglou V,Lichtenstein R.Categorizing Web Queries According to Geographical Locality//Proc of the20th International Conference on Information and Knowledge Management.New Orleans,USA,2003:325-333.
  • 5Shen Dou,Sun Jiantao,Yang Qiang,et al.Building Bridges for Web Query Classification//Proc of the29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.Seattle,USA,2006:131-138.
  • 6Liu Yiqun,Zhang Min,Ru Liyun,et al.Automatic Query Type Identification Based on Click through Information//Proc of the3rd Asia Information Retrieval Symposium.Singapore,Singapore,2006:593-600.
  • 7Lee U,Liu Zhenyu,Cho J.Automatic Identification of User Goals in Web Search//Proc of the14th International Conference on World Wide Web.Chiba,Japan,2005:391-400.
  • 8Craswell N,Hawking D,Robertson S.Effective Site Finding Using Link Anchor Information//Proc of the24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.New Orleans,USA,2001:250-257.
  • 9Westerveld T,Kraaij W,Hiemstra D.Retrieving Web Pages Using Content,Links,URLs and Anchors//Proc of the10th Text Retrieval Conference.Gaithersburg,USA,2001:663-672.
  • 10Kang I,Kim G.Query Type Classification for Web Document Retrieval//Proc of the26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.Toronto,Canada,2003:64-71.

共引文献117

同被引文献10

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部