期刊文献+

爆炸成型弹丸成型过程中的断裂数值模拟及机理分析 被引量:10

Numerical Simulation and Mechanism Analysis of EFP's Fracture in Forming Process
下载PDF
导出
摘要 为研究爆炸成型弹丸(EFP)轴向断裂机理,采用有限元分析软件LS-DYNA,引入Johnson-Cook失效模型及自适应算法,对典型EFP装药结构不同外曲率球缺形药型罩OFHC铜EFP成型过程中的断裂进行数值模拟,并通过实验进行验证。采用应力波理论分析了长杆形EFP轴向断裂机理并确定了速度梯度断裂临界值。研究结果表明:基于Johnson-Cook失效模型及自适应算法,采用LS-DYNA软件可较好地模拟EFP成型过程中的断裂现象;对于特定EFP装药结构的球缺形药型罩,存在药型罩曲率临界值使长杆形EFP发生轴向断裂;应力波理论计算所得速度临界值(60~83 m/s)与数值模拟所得EFP速度梯度断裂临界值(76 m/s)吻合较好。该研究结果对OFHC铜EFP的设计具有参考意义,理论分析方法可应用于确定长杆形EFP的速度梯度断裂临界值,并为新材料在EFP药型罩中的应用提供参考。 In order to study the fracture mechanism of explosively-formed projectile (EFP) in axial direc- tion, the forming and fracturing processes of OFHC EFP with typical charge structure are simulated by u- sing LS-DYNA software, in which Johnson-Cook failure model and adaptive algorithm are introduced. Hemispherical liners with different extrinsic curvatures are simulated, and the simulated results of fracture are validated through experiment. The stress wave theory is used to analyze the fracture mechanism of long rod EFP, and confirm the critical velocity gradient. The results show that the fracture phenomenon of EFP can be well simulated by using LS-DYNA software based on Johnson-Cook failure model and adap- tive algorithm. For certain EFP charge structure with hemispherical liner, a critical liner curvature which makes the long rod EFP fracture in forming process exists. The critical value of 60 - 83 m/s calculated from stress wave theory agrees well with the critical velocity gradient (76 m/s) of EFP fracture. The the- oretical analysis method can be used to confirm the critical velocity gradient of long rod EFP fracture.
出处 《兵工学报》 EI CAS CSCD 北大核心 2017年第3期417-423,共7页 Acta Armamentarii
基金 国家自然科学基金委员会和中国工程物理研究院联合基金项目(U1530137) 爆炸科学与技术国家重点实验室自主课题项目(QNKT16-01)
关键词 兵器科学与技术 爆炸成型弹丸 数值模拟 实验验证 断裂机理 Johnson-Cook失效模型 ordnance science and technology explosively-formed projectile numerical simulation ex-perimental validation fracture mechanism Johnson-Cook failure model
  • 相关文献

参考文献5

二级参考文献54

  • 1黄正祥,陈惠武,官程.大炸高条件下药型罩结构设计[J].弹箭与制导学报,2000,20(3):51-53. 被引量:9
  • 2孙克恕.关于刚体定轴转动定律与角动量[J].安庆师范学院学报(自然科学版),1995,1(2):98-98. 被引量:4
  • 3陈刚,陈忠富,陶俊林,牛伟,张青平,黄西成.45钢动态塑性本构参量与验证[J].爆炸与冲击,2005,25(5):451-456. 被引量:98
  • 4刘国跃,龚劲涛,吴英.单摆运动的非谐振和弱阻尼修正[J].绵阳师范学院学报,2007,26(2):38-41. 被引量:7
  • 5Klepaczko J R. Review on critical impact velocities in tension and shear[J]. International Journal of Impact Engineering, 2005,32(1/2/3/4) : 188-209.
  • 6Rusinek A, Zaera R, Klepaczko j R, et al. Analysis of inertia and scale effects on dynamic neck formation during tension of sheet steel[J]. Acta Materialia, 2005,53 (20) : 5387-5400.
  • 7Hu X Y, Daehn G S. Effect of velocity on flow localization in tension[J]. Acta Materialia, 1996,44(3) : 1021-1033.
  • 8Mann H C. High-velocity tension-impact tests[J]. Proceedings of ASTM, 1936,36:85-108.
  • 9Clark D S, Wood D S. The influence of specimen dimension and shape on the results in tension impact testing[J]. Proceedings of ASTM, 1950,50: 577-585.
  • 10Wood W W. Experimental determination of shear modulus of laminated fiber-reinforced composites[J]. Experimental Mechanics, 1967,7(10):441-446.

共引文献84

同被引文献71

引证文献10

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部