期刊文献+

基于主曲线的空气悬浮颗粒物质PM10的预测

The Prediction of Air Suspended Particulate Matter PM 10 Based on the Principal Curve
下载PDF
导出
摘要 对空气中有害物质(例如PM10)浓度的预测具有重要的现实意义,但绝大多数情况下,这类数据具有不均衡、在线贯序到达的特点,利用传统监督学习方法难以实现快速、有效的预测.为解决该问题,提出了一种基于主曲线的PM10预测方法,建立2010年到2012年PM10的模型,拟合得到相应的参数,最终得到主曲线预测模型,并通过大量实验分别设定不同浓度PM10相应的阈值.研究表明,基于主曲线的PM10预测模型预测速度快、误差小,同时网络结构更加紧凑. It's of very practical significance to predict the density of hazardous substance( such as PM10) in the air,but in the overwhelming majority of cases,this kind of data have the characteristics of imbalance and sequential arrived online,and it's difficult to realize rapid and effective prediction by traditional supervised learning methods. To solve this problem,this paper proposes a PM 10 prediction method based on the principal curve,building a PM10 model between 2010 and 2012,receiving corresponding parameters by fitting,finally getting the prediction model of the principal curve,and setting corresponding threshold values of different density of PM10 by a lot of experiment. The research shows that the PM10 prediction model based on the principal curve predicts rapidly and has a lower prediction error,meanwhile,the network structure is more compact.
出处 《平顶山学院学报》 2017年第2期21-25,共5页 Journal of Pingdingshan University
基金 国家自然科学基金(U1204609)
关键词 主曲线 悬浮颗粒物质PM10 不均衡 the principal curve suspended particulate matter PM10 imbalance
  • 相关文献

参考文献4

二级参考文献126

  • 1陈晓云,胡运发.规则加权的文本关联分类[J].中文信息学报,2005,19(4):52-59. 被引量:4
  • 2苏金树,张博锋,徐昕.基于机器学习的文本分类技术研究进展[J].软件学报,2006,17(9):1848-1859. 被引量:386
  • 3郑恩辉,许宏,李平,宋执环.基于ν-SVM的不平衡数据挖掘研究[J].浙江大学学报(工学版),2006,40(10):1682-1687. 被引量:8
  • 4陈斌,冯爱民,陈松灿,李斌.基于单簇聚类的数据描述[J].计算机学报,2007,30(8):1325-1332. 被引量:18
  • 5Tikhonov A N, Arsenin V Y. Solution of Ill-Posed Problems. New York: Wiley, 1977
  • 6Hastie T. Principal curves and surfaces. Laboratory for Computational Statistics, Stanford University, Department of Statistics: Technical Report 11, 1984
  • 7Verbeek J J, Vlassis N, Krse B. A k-segments algorithm for finding Principal Curves. Computer Science of Institute, University of Amsterdam:Technical Report IAS-UVA-00-11,2000
  • 8Sandilya S, Kulkarni S R. Principal curves with bounded turn. IEEE Transactions on Information Theory, 2002,48(10):2789~2793
  • 9Smola A J. Learning with kernel[Ph D dissertation]. University Berlin, 1998
  • 10Rissanen J. Stochastic complexity and modeling. The Annals of Statistics, 1986,14(3):1080~1100

共引文献197

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部