期刊文献+

基于可信反馈的微博用户情绪异常预警模型研究 被引量:5

Warning Model of Micro-blog Users' Abnormal Emotion Based on Trusted Feedback
原文传递
导出
摘要 【目的/意义】微博是用户情感发泄的重要渠道,预警模型将有助于发现异常情绪用户,以便及时展开干预。【方法/过程】模型首先利用极性词典和句法序列规则计算微博情感极性程度值,过滤出可疑情绪异常节点;然后利用微博社交网互动关系,计算节点之间的信任值,进一步通过可信反馈对情绪异常节点进行判断。【结果/结论】实验表明,基于序列规则+词典比基于词典的方法对可疑异常情绪用户过滤准确性高,而相比这两种文本挖掘的方法,将可信反馈加入异常情绪判断进一步提高了识别准确度。 [Purpose/significance] Micro-blog is an important way for blogger to vent emotion. The warning model can help find some abnormal emotion users, so that a timely intervening can prevent the occurrence of some extreme behavior. [Method/process]The model calculated micro-blog sentiment degree by polarity lexicon and syntax, and filtered out the suspicious abnormal emotional node. It calculated trust value among micro-blog users through social network interaction, and further to judge the abnormal emotion users through trusted feedback. [ Result/conclusion ] The experiment shows that syntax rule & dictionary-based has a higher accuracy than dictionary-based when filtering the suspicious abnormal emotion users. Compared to the two ways of text mining, trusted feedback can further improve the recognition accuracy.
作者 熊建英
出处 《情报科学》 CSSCI 北大核心 2017年第4期48-53,共6页 Information Science
基金 江西省软科学研究计划项目(20161BBA10037)
关键词 微博 可信反馈 情感分析 情绪异常预警 micro-blog trust feedback sentiment analysis abnormal emotion warning
  • 相关文献

参考文献4

二级参考文献53

  • 1杨频,李涛,赵奎.一种网络舆情的定量分析方法[J].计算机应用研究,2009,26(3):1066-1068. 被引量:19
  • 2朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:327
  • 3姚天昉,娄德成.汉语语句主题语义倾向分析方法的研究[J].中文信息学报,2007,21(5):73-79. 被引量:78
  • 4陈建美.中文情感词汇本体的构建及其应用[D].大连:大连理工大学,2009.
  • 5Turney P. Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews [C]//Proc of 40th Annual Meeting of the Association for Computational Linguistics, Stroudsburg, USA: ACL, 2002 :417-424.
  • 6Pang B, Lee L, Vaithyanathan S. Thumbs up? Sentiment classification using machine learning Techniques [C] //Proc of 2002 Conf on Empirical Methods in Natural Language Processing. Stroudsburg, USA: ACL, 2002: 79-86.
  • 7Riloff E, Wiebe J. Learning extraction patterns for subjective expressions [C] //Proc of 2003 Conf on Empirical Methods in Natural Language Processing. Stroudsburg, USA: ACL, 2003:105-112.
  • 8Yu H, Hatzivassiloglou V. Towards answering opinion questions: Separating facts from opinions and identifying the polarity of opinion sentences [C] //Proe of 2003 Conf on Empirical Methods in Natural Language Processing. Stroudsburg, USA: ACL, 2003: 129-136.
  • 9Kanayama H, Nasukawa T. Fully automatic lexicon expansion for domain-oriented sentiment analysis [C] //Proc of 2006 Conf on Empirical Methods in Natural Language Processing. Stroudsburg, USA: ACL, 2006:355-363.
  • 10Tang tluifeng, "Fan Songbo, Cheng Xueqi. A survey on sentiment detection of reviews [J]. Expert Systems with Applications, 2009, 36(7): 10760-10773.

共引文献57

同被引文献62

引证文献5

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部