期刊文献+

基于熵惩罚的EM未知杂波估计的PHD多目标跟踪算法 被引量:2

PHD Multi-target Tracking Based on Entropy Penalized EM of Unknown Clutter Estimation
下载PDF
导出
摘要 针对概率假设密度多目标跟踪算法中存在的杂波强度未知的问题,提出一种基于熵惩罚的EM未知杂波估计的PHD多目标跟踪(EPEM-PHD)算法。首先采用有限混合模型对未知杂波密度建模,其次分别对混合权重及缺失参数施加熵惩罚因子,然后通过自适应动态系数调节,使得混合模型低权值分量加速消亡,减少了算法迭代次数,且算法对初始参数不敏感。仿真结果表明,该算法在杂波强度未知的环境下,具有精度高、跟踪稳定的优势,提高了PHD滤波器在多目标跟踪中的性能。 Aiming at the unknown clutter intensity existed in Probability Hypothesis Density (PHD) multi- target tracking algorithm, a tracking algorithm based on Entropy Penalized Expectation Maximization (EPEM) of unknown clutter estimation is proposed, called EPEM-PHD. The clutter intensity is modeled by finite mixture model. The entropy penalized factor is applied on mixed weight and the missing parameter. By adjusting the adaptive coefficient, the extinction of components with low weight is accelerated, thus can decrease the times of iterations. And the algorithm is not sensitive to initial parameters. Simulation results show that: the algorithm has the advantages of high precision and stable tracking, which improves the performance of PHD filter in multi-target tracking.
出处 《电光与控制》 北大核心 2017年第4期27-32,共6页 Electronics Optics & Control
基金 总参通指重点基金(TZLDLYYB2014002)
关键词 多目标跟踪 PHD 未知杂波估计 熵惩罚 EM multi-target tracking Probability Hypothesis Density (PHD) unknown clutter estimation entropy penalized Expectation Maximization (EM)
  • 相关文献

参考文献3

二级参考文献47

  • 1田淑荣,王国宏,何友.多目标跟踪的概率假设密度粒子滤波[J].海军航空工程学院学报,2007,22(4):417-420. 被引量:10
  • 2余成文,郭雷.基于有限混合多变量t分布的鲁棒聚类算法[J].计算机科学,2007,34(5):190-193. 被引量:3
  • 3Mahler R. Statistical multisource multitarget information fusion[M]. Norwood, MA: Artech House, 2007.
  • 4Mahler R. Multitarget Bayes filtering via first-order multitarget moment[J]. IEEE Trans on Aerospace and Electronic Systems, 2003, 39(4): 1152-1178.
  • 5Lin L, Bar-Shalom Y, Kirubarajan T. Track labeling and PHD filter for multitarget tracking[J]. IEEE Trans on Aerospace and Electronic Systems, 2006, 42(3): 778-795.
  • 6Panta K, Vo B-N, Singh S, et al. Probability hypothesis density filter versus multiple hypothesis tracking[C]. Proc of SPIE, Signal Processing, Sensor Fusion and Target Recognition ⅩⅢ. Bellingham, 2004, 5429: 284-295.
  • 7Panta K, Vo B, Singh S. Improved probability hypothesis (PHD) filter for multitarget tracking[C]. Proc of the Int Conf on Intelligent Sensing and Information Processing. Bangalore, 2005:213-218.
  • 8Ma W-K, Vo B-N, Singh S, et al. Tracking an unknown time-varying number of speakers using TDOA measurements: A random finite set approach[J]. IEEE Trans on Signal Processing, 2006, 9: 3291-3304.
  • 9Vo B-T, Vo B-N, Cantoni A. Bayesian filtering with random finite set observations[J]. IEEE Trans on Signal Processing, 2008, 56(4): 1313-1326.
  • 10Vo B-N, Singh S, Ma W-K. Tracking multiple speakers with random sets[C]. Proc of IEEE Int Conf on Acoust, Speech, Signal Process. Montreal, 2004, 2: 357-360.

共引文献23

同被引文献9

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部