期刊文献+

矩阵方程A^TXA=C的对称M对称最佳逼近解 被引量:2

Symmetric M Symmetric Optimal Approximation Solution of Matrix Equation A^TXA=C
下载PDF
导出
摘要 在结构动态模型修正中,通常需要修正刚度矩阵与质量矩阵以满足正交条件。通过研究它们的极小二乘逼近解对其进行修正。故在对称M对称矩阵集中,利用标准相关分解(CCD),获得了矩阵方程A^TXA=C的对称M对称极小二乘解;在此基础上应用广义奇异值分解(GSVD)和投影定理,得到了给定矩阵的极小二乘解的对称M对称最佳逼近解。 In the dynamic model updating,it usually needs to modify the stiffness matrix and the mass matrix to satisfy the orthogonal conditions. In this paper,they are modified by the study of their leastsquares approximations. Then we obtain the symmetric M symmetric least square solution 's of A^T XA = C by using canonical correlation decomposition in the symmetric M symmetric matrices set;Based on this,by using the projection theorem and the generalized singular value decomposition,we get its symmetric M symmetric optimal approximation solution of a given matrix.
作者 徐玉霞 雷英杰 侯强 XU Yu-xia LEI Ying-jie HOU Qiang(School of Science, North University of China, Taiyuan 030051, China)
机构地区 中北大学理学院
出处 《重庆理工大学学报(自然科学)》 CAS 2017年第3期143-150,共8页 Journal of Chongqing University of Technology:Natural Science
基金 国家自然科学基金青年基金资助项目(11501528)
关键词 对称M对称矩阵 投影定理 标准相关分解 极小二乘解 最佳逼近解 symmetric M symmetric matrices projection theorem canonical correlation decomposition least square solution optimal approximation solution
  • 相关文献

参考文献2

二级参考文献15

  • 1彭向阳,胡锡炎,张磊.矩阵方程的反对称正交反对称解及其最佳逼近[J].四川工业学院学报,2004,23(4):12-14. 被引量:1
  • 2Fletcher L. An inverse eigenvalue problem from control theory [C] // Numerical Treatment of Inverse Problems for Differential and Integral Equations. Boston: Birkhauser, 1983.
  • 3Joseph K. Inverse eigenvalue problem in structural design[J]. The Amer Inst Aero Astr, 1992,10:2890-2896.
  • 4Friswell M I, Mottershead J E. Finite Element Model Updating in Structural Dynamics [M], Dordrecht: Kluwer Academic Publishers, 1995.
  • 5Datta B. Finite element model updating, eigen structure assignment, and eigenvalue embedding techniques for vibrating systems [J]. Mech Sys Sign Proc, 2002,16:83-96.
  • 6Yuan Y, Dai H. A generalized inverse eigenvalue problem in structural dynamic model updating [J]. J Comput Appl Math,2009,226:42-49.
  • 7Yin Q. The inverse generalized eigenvalue problem [J]. J Math Res Expo, 1992,12(2): 269-276.
  • 8Dai H. An algorithm for symmetric generalized inverse eigenvalue problems [J]. Linear Algebra Appl, 1999, 296:79-98.
  • 9Ghanbari K. A survey on inverse and generalized inverse eigenvalue problems for Jacobi matrices [J]. Appl Math Comput, 2008,195: 355-363.
  • 10Trench W F. Characterization and problems of (i?,^-symmetric, (i?,5)-skew symmetric, and (/?,.S')-conjugate matrices [J]. SIAM J Matrix Anal Appl, 2005, 26(3): 748-757.

共引文献4

同被引文献10

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部