期刊文献+

基于Kinect的实时障碍物检测 被引量:1

Real-time obstacle detection based on Kinect
下载PDF
导出
摘要 传统的传感器在移动机器人障碍物检测领域都有其各自的局限性。文章提出基于Kinect的障碍物检测方法:利用Kinect传感器获取环境深度图像;通过Kinect标定配准之后获取校准参数;通过该参数获得图像像素点与空间三维坐标的对应关系;通过空间三维坐标确定地平面与障碍物区域,并将障碍物区域作为感兴趣区域;通过三维坐标在x轴和z轴的连续性对感兴趣区域进行处理,分割出各个障碍物。实验结果表明,文中算法可以有效且实时地检测到障碍物信息。 Traditional sensors have their own limitations in the field of obstacle detection for mobile robots. In this paper,an obstacle detection method based on Kinect is proposed. The Kinect sensor is used to obtain the depth image of the environment; The calibration parameters are obtained after Kinect calibration and registration; By these parameters,the correspondence between the image pixel points and the spatial threedimensional coordinates is obtained; The ground plane and the obstacle area are determined by the spatial three-dimensional coordinates,and the obstacle area is regarded as the region of interest; The region of interest is processed by the continuity of the x and z axes in three-dimensional coordinates,and each obstacle is segmented. Finally,the experimental results show that the proposed algorithm can detect the obstacle information efficiently and in real time.
作者 丁亮
出处 《微型机与应用》 2017年第7期19-21,25,共4页 Microcomputer & Its Applications
关键词 KINECT 障碍物检测 实时 Kinect obstacle detection real time
  • 相关文献

参考文献1

二级参考文献10

  • 1CHU J,NIE C M.Multi-view point clouds registration and stitching based on SIFT feature[C].In Proc.Int.Conf.Computer Research and Development,Shanghai,China,2011:274-278.
  • 2HENRY P,KRAININ M,HERBST E,et al.RGB-D mapping:using depth cameras for dense 3-D modeling of indoor environments[C].In Proc.Int.Symp.Experimental Robotics,New Delhi,India,2010,477-491.
  • 3DELLART F,SEITZ S M,THORPE C E,et al.Structure from motion without correspondence[C].Proc of IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2000:557-564.
  • 4SEITZ S M,CURLESS B,DIEBEL J,et al.A comparison and evaluation of multi-view stereo reconstruction algorithms[C].Proc of IEEE Conference on Computer Vision and Pattern Recognition,2006:519-526.
  • 5NEWCOMBE R A,IZADI S,HILLIGES O,et al.Kinect Fusion:real-time dense surface mapping and tracking[C].Proc of the 2011 10th IEEE Int.Symposium on Mixed and Augmented Reality,ISMAR’11,Washington,DC,USA,2011:127-136.
  • 6LEJEUNE A,PIERARD S,VAN DROOGENBROECK M.A new jump edge detection method for 3D camera[C].Proc of the 2011 International Conference on 3D Imaging(IC3D),2011:1-7.
  • 7TOMASI C,MANDUCHI R.Bilateral filtering for gray and color images[C].Proceedings of the Sixth International Conference on Computer Vision,1998:839-846.
  • 8蒋成成,胡同森,周维.一种改进的迭代最近点算法[J].计算机系统应用,2009,18(8):84-87. 被引量:15
  • 9贺永兴,欧新良,匡小兰.邻域特征在点云配准中的应用[J].计算机应用,2012,32(3):762-765. 被引量:8
  • 10郭连朋,陈向宁,徐万朋,刘田间.基于kinect传感器的物体三维重建[J].四川兵工学报,2014,35(11):119-123. 被引量:15

共引文献5

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部