期刊文献+

共模误差PCA与ICA提取方法的比较 被引量:12

Analysis and Comparison of Common Mode Error Extraction Using Principal Component Analysis and Independent Component Analysis
下载PDF
导出
摘要 为消除共模误差CME,目前广泛应用的主成分分析法(PCA)基于观测数据的二阶统计量(方差和协方差)将观测网残差分解成一组不相关的随时间变化的模态和对应的空间响应,而GPS时间序列分布具有非高斯特征,二阶统计量不能完全描述其随机特性。本文假设区域网CME与其他误差相互统计独立,则可以采用独立分量分析(ICA)法。采用模拟数据对ICA提取CME的精确性和有效性进行验证,并与PCA结果进行对比。结果表明,ICA能够有效地提取观测网CME。 Common mode error(CME), a major source of error correlated spatially in regional GPS so- lutions, should be removed to enhance signal-to-noise ratio in GPS coordinate time series. Principal component analysis (PCA), which is widely used for CME extraction, decomposes the time series of the GPS network into a group of modes, where each mode consists of a common temporal function and corresponding spatial response based on second-order statistics. Since the probability distribution function of GPS time series is sometimes no-Gaussian, the second-order statistic cannot fully capture its stochastic characteristics. In this paper, we assume that CME is stochastic independent with other error sources, so an independent component analysis (ICA) is introduced to analyze it. The perform- ance of ICA is validated and compared with that of PCA through a simulated example.
出处 《大地测量与地球动力学》 CSCD 北大核心 2017年第4期385-389,共5页 Journal of Geodesy and Geodynamics
基金 国家重点研发计划(2016YFB0501701) 国家自然科学基金(41604013 41374019 41474015) 地理信息工程国家重点实验室开放基金(SKLGIE2015-Z-1-1) 江西省数字国土重点实验室开放研究基金(DLLJ201701)~~
关键词 GPS时间序列 主成分分析 独立分量分析 共模误差 时空滤波 GPS time series principal component analysis (PCA) independent component analysis(ICA) common mode error spatiotemporal filtering
  • 相关文献

参考文献2

二级参考文献44

  • 1王敏,沈正康,董大南.非构造形变对GPS连续站位置时间序列的影响和修正[J].地球物理学报,2005,48(5):1045-1052. 被引量:157
  • 2黄立人.GPS基准站坐标分量时间序列的噪声特性分析[J].大地测量与地球动力学,2006,26(2):31-33. 被引量:146
  • 3Barbot S, Fialko Y, Bock Y. 2009. Postseismic deformation due to the Mw6.0 2004 Parkfield earthquake: Stressdriven creep on a fault with spatially variable rate-and state friction parameters[J]. J Geophys Res, 14: B07405.
  • 4Brooks B, Foster J, Sandwell D, Wolfe C, Okubo P, Poland M, Myer D. 2008. Magmatically triggered slow slip at Kilauea Volcano, Hawaii[J]. Science, 321(5893) : 1177.
  • 5Calais E, Han J Y, DeMets C, Nocquet J M. 2006. Deformation of the North American plate interior from a decade of continuous GPS measurements[J]. J Geophys Res, 111:B06402.
  • 6Dong D N, Fang P, Bock Y, Webb F, Prawirodirdjo L, Kedar S, Jamason P. 2006. Spatiotemporal filtering using principal component analysis and Karhunen Loeve expansion approaches for regional GPS network analysis[J]. J Geophys Res, 111: B03405.
  • 7Freed A M, Btirgmann R, Calais E, Freymueller J, Hreinsdottir S. 2006. Implications of deformation following the 2002 Denali, Alaska, earthquake for postseismic relaxation processes and lithospheric rheology[J]. J Geophys Res, 111: B01401.
  • 8Heki K, Kataoka T. 2008. On the biannually repeating slow-slip events at the Ryukyu Trench, southwestern Japan[J]. J Geophys Res, 113: Bl1402,.
  • 9Khan S A, Wahr J, Leuliette E, van Dam T, Larson K M, Francis O. 2008. Geodetic measurements of postglacial ad justments in Greenland[J]. J Geophys Res, 113: B02402.
  • 10Kogan M G, Steblov G M. 2008. Current global plate kinematics from GPS (1995 2007) with the plate consistent refer ence frame[J]. JGeophysRes, 113: B04416.

共引文献128

同被引文献82

引证文献12

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部