期刊文献+

基于联合QR分解的干扰对齐算法

Interference Alignment Algorithm Based on Joint QR Decomposition
下载PDF
导出
摘要 随着频率资源日益紧缺,全频率复用技术受到重视,而该场景下小区间干扰和小区内干扰是制约系统容量的重要因素。分布式迭代干扰对齐作为一种干扰管理技术,能够大大提高小区的系统容量,但是具有复杂度高的缺陷。针对3小区2用户的MIMO下行干扰信道模型,提出了一种能够对齐小区间干扰、小区内干扰的线性干扰对齐算法。该算法对联合信道矩阵进行QR分解,再依据各小区等效信道模型的特征,利用最小化干扰泄露以及迫零算法对齐小区间以及小区内干扰,每用户能够实现其信道空间维度1/3的自由度,而接收端只需进行一次预编码处理,大大降低了接收端的复杂度。仿真结果表明,相比于分布式迭代干扰对齐算法,在实现每用户相同自由度的情况下,能够在保证系统性能的同时大大降低复杂度,甚至在低自由度下性能更优。 With the increasing scarcity of spectrum resource, the full frequency reusing technique has been taken more seriously. However, the inter-cell and intra-cell interference become the bottleneck of the system capacity in that scenario. System capacity can be sharply im- proved with the interference management scheme named distributed iteration interference alignment, meanwhile, with the drawback of high complexity. For three cells and two users in each cell MIMO broadcast interference channel, a linear interference alignment algorithm is proposed that can align the inter-cell and intra-ceU interference. According to the characteristics of the equivalent channel model based on the QR decomposition of the joint channel matrix,each user can achieve Degree of Freedom (DoF) that is one-third of the channel space dimension with minimizing the interference leakage and zero-forcing. Moreover,just one pre-coding is processed in the receiver which can greatly reduce the complexity. The simulation results show that compared to the distributed iteration interference alignment al- gorithm with the same DoF for each user, the proposed algorithm can significantly decrease the complexity and guarantee system perform- ance, even better in lower DoF situation.
作者 纪辉 董恒
出处 《计算机技术与发展》 2017年第4期108-112,共5页 Computer Technology and Development
基金 国家自然科学基金资助项目(61471202 61271234)
关键词 干扰对齐 小区间干扰 小区内干扰 QR分解 自由度 interference alignment inter-cell interference intra-cell interference QR decomposition degree of freedom
  • 相关文献

参考文献2

二级参考文献23

  • 1GHASEMI A,SOUSA E.Interference aggregation in spectrum sens-ing cognitive radio wireless networks[J].IEEE Journal of SelectedTopics in Signal Processing,2008,2(1):41-56.
  • 2HAYKIN S.Cognitive radio:brain-empowered wireless communica*tions[J].IEEE Journal of Selected Areas on Communications,2005,23(2):201-202.
  • 3JAFAR S A,FAKHEREDDIN M J.Degrees of freedom for the MIMOinterference channel[J].IEEE Transaction on Information Theory,2007,53(7):2637-2642.
  • 4CADAMBE V R,JAFAR S A.Interference alignment and degrees offreedom of the ^T-user interference channels[J].IEEE Transaction onInformation Theory,2008,54(8):3425-3441.
  • 5GOU T Q JAFAR S A.Degrees of freedom of the K user NMIMO interference channel[J].IEEE Transaction on Information The-ory,2010,56(12):6040-6057.
  • 6SUH C,et al.Downlink interference alignment[J].IEEE Transactionon Communications,2011,59(9):2616-2626.
  • 7RUAN L,LAU V K N,RAO X.Interference alignment for partiallyconnected MIMO cellular network[J].IEEE Transaction on SignalProcessing,2012,60(7):3692-3701.
  • 8JXJNG B C,SHIN W Y.Opportunistic interference alignment forinterference limited celluclar TDD uplink[J].IEEE CommunicationLetters,2011,15(2):148-150.
  • 9PERLAZA S M,FAWAZ N,LASAULCE S,et al. From spectrumpooling to space pooling:opportunistic interference alignment inMIMO cognitive networks[J].IEEE Transaction on Signal Processing,2010,58(7):3728-3741.
  • 10VAZE C S,VARANASI M K.The degrees of freedom region of theMIMO cognitive interference channel with no CSIT[A].Proceedingsof International Symposium on Information Theory(ISIT2010)[C].Austin,Texas,USA,2010.440-444.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部