摘要
传统的基于多准则决策的方案评价方法均基于专家的主观决策确定指标的优劣程度,并且方案排序结果难以直观地判断方案的优劣程度。针对该问题,将信息公理可量化指标设计程度的优势和云模型可进行定量信息转化的优势相结合,提出了信息公理与云模型集成的方案评价方法。相比于模糊集方法,粗糙集不需要先验信息,能够客观地处理模糊以及不确定的评价指标信息,提出了基于粗糙信息公理的方案指标评价方法。以方案评价指标信息量为云滴,运用逆向云模型将信息量转换为定性的方案评价,进而通过云数字特征对方案进行分析。以某装载机设计方案为例,验证了所提方法的有效性。
The traditional concept evaluation approaches based on multi-criteria decision-making decided the criteria according to experts' subjective decisions,and the ranking result could hardly judge the quality of concept intuitively.To deal with the problem,a concept evaluation approach combined the advantage of information axiom that could quantify the design degree of criteria and the advantage of cloud model that could transform the quantitative information was proposed based on information axiom and cloud model.Compared with the fuzzy set method,rough set did not require a priori information and could objectively deal with the fuzzy and uncertain information of evaluation criteria.A concept evaluation approach based on rough information axiom was proposed.The information content of concept evaluation criteria deemed as cloud droplets were used to transform information content into qualitative concept evaluation with backward cloud model,and then the concept was analyzed by cloud digital feature.A case of concept evaluation for loader was given out to demonstrate the effectiveness of the proposed approach.
出处
《计算机集成制造系统》
EI
CSCD
北大核心
2017年第3期661-669,共9页
Computer Integrated Manufacturing Systems
基金
国家自然科学基金资助项目(71301104
71271138)
高等学校博士学科点专项科研基金资助项目(20133120120002)
上海市教委员科研创新资助项目(14YZ088)
上海市一流学科资助项目(S1201YLXK)
沪江基金资助项目(A14006)~~
关键词
方案评价
信息公理
粗糙集
云模型
concept evaluation
information axiom
rough set
cloud model