期刊文献+

基于SH模态导波杆的电站高温结构壁厚测量方法 被引量:4

Thickness Measuring Method of High-temperature Power Plant Structures Based on SH Mode Waveguide
下载PDF
导出
摘要 提出了一种基于SH模态导波杆的电站高温结构壁厚测量方法,该方法使用导波杆将压电传感器与高温被测结构隔开。通过研究发现非频散SH模态导波能通过矩形横截面导波杆将导波信号由传感器导入到高温被测结构中。实验验证了通过特定夹具以干耦合方式将导波杆固定在被测结构表面可以获得较好的信号。使用2MHz中心频率下的汉宁窗调制正弦波信号实现了对处于不同温度被测结构壁厚的监测,室温(25℃)时,壁厚测量值与实际厚度相差0.016mm,高温被测结构实验信号也非常好,波速测量值与拟合曲线所得速度值误差范围为0.1%~2.5%。 It is significant to put forward a thickness measuring method ot high temperature power plant structures based on SH mode, which used a waveguide to isolate the transducers from the high- temperature measurement zones. It was found that a nondispersive SH mode guided wave in rectangu- lar waveguide was employed to transmit the guided wave signals from the transducers to the measure- ment zones. In addition, experiments were investigated by dry-coupled to attach the waveguides to the components, whichshows that clamping the waveguides to the component surfaces may get best re- sults. By using Hanning window modulated sine wave signals with 2 MHz center frequency, the thick- ness difference of the measured values and actual values of wall thickness is 0.016 mm at the room temperature(25℃). Performance at high temperatures was tested without signal degradation. The er- ror ranges of wave velocity measurement values and the velocities of the fitting curve are 0.1% to 2.5%.
出处 《中国机械工程》 EI CAS CSCD 北大核心 2017年第7期757-763,共7页 China Mechanical Engineering
基金 国家自然科学基金资助项目(51134016) 中央高校基本科研业务费专项资金资助项目(2016XS25)
关键词 超声导波 SHO模态 导波杆 高温 壁厚检测 数值模拟 ultrasonic guided wave SHO mode waveguide high temperature thickness monito-ring numerical simulation
  • 相关文献

参考文献3

二级参考文献32

  • 1何存富,刘增华,孙雅欣,王秀彦,吴斌.基于超声导波技术对弯管中缺陷检测的实验研究[J].中国机械工程,2005,16(18):1662-1665. 被引量:21
  • 2刘增华,何存富,杨士明,王秀彦,吴斌.充水管道中纵向超声导波传播特性的理论分析与试验研究[J].机械工程学报,2006,42(3):171-178. 被引量:45
  • 3林俊明,林发炳,林春景.隔热层下钢管壁厚脉冲涡流检测系统[J].无损探伤,2006,30(6):26-27. 被引量:7
  • 4梁宏宝,朱安庆,李子芳.温度对超声波在16MnR钢中传播速度的影响[J].化工机械,2007,34(3):134-138. 被引量:8
  • 5Cross N O. On stream high temperature wall thickness measuring stud[C]. Proceedings of the 7th symposium, Nondestructive Evaluation of Components and Materials in Aerospace Weapons Systems and Nuclear Applications. San Antonio[s. n. ], 1969.
  • 6Youngdahl C A, Ellingson W A. Nondestructive monitoring of erosive wear at synfuels pilot plants [J]. Material Performance, 1985,24 (1) : 48-53.
  • 7Alleyne D N,Lowe M J S,Cawley P. The Reflection of Guided Waves from Circumferential Notches in Pipes[J]. Journal of Applied Mechanics, 1998, 65: 635-641.
  • 8Sun Z,Zhang L, Rose J L. Flexural Torsional Guided Wave Mechanics and Focusing in Pipe[J]. Journal of Pressure Vessel Technology,2005,127 :471-478.
  • 9Alleyne D N,Cawley P. Long Range Propagation of Lamb Waves in Chemical Plant Pipework[J]. Mate- rial Evaluation, 1997,55 : 504-508.
  • 10Cawley P,Lowe M J S,Simonetti F,et al. The Vari- ation of the Reflection Coefficient of Extensional Guided Waves in Pipes from Defects as a Function of Defect Depth, Axial Extent, Circumferential Ex- tent and Frequency[J]. Journal of Mechanical Engi- neering Science,2002,216 : 1131-1143.

共引文献21

同被引文献39

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部