摘要
抛物方程法是目前应用最为广泛的对流层电波传播特性仿真方法,分步傅里叶变换法是应用最广泛的抛物方程求解方法。抛物方程作为一种由近似得到的模型,其近似过程不可避免的会带来误差。分步傅里叶变换法在进行数值求解时所做的近似,也会对抛物方程的计算结果造成影响。总结了以往对于抛物方程误差的研究,详细分析了地球曲率情况下窄角和宽角抛物方程近似过程和分步傅里叶变换法求解过程中造成的误差。
Parabolic equation method is the most widely used method in radiowave propagation prob- lems. While split-step Fourier transform method is the most widely' used method in solving parabolic equations. As an approximation model, the approximation process of parabolic equation would inevi- tably lead to error. The approximation process of split-step Fourier transform method used in solving parabolic equation would also lead to error. This paper summarizes the past research. For the narrow angle and wide angle parabolic equations considering the earth curvature cases, errors in parabolic equations approximation process and in solving parabolic equations with split-step Fourier transform method are discussed.
出处
《信息工程大学学报》
2017年第1期24-30,共7页
Journal of Information Engineering University
基金
科研基金资助项目(9140c860303)
关键词
抛物方程
分步傅里叶变换
误差
parabolic equation
split-step Fourier transform
error