期刊文献+

基于用户标签的推荐系统研究

Research on Recommendation System Based on User Tag
下载PDF
导出
摘要 在标签系统中用户可以随意上传资源,并且允许使用任意的称为标签的文字对资源进行标注。结合协同过滤推荐技术开发微博系统,通过获取新浪微博真实用户数据进行实验分析,验证所提出的模型及相关算法的有效性,并根据实验提出面向用户的推荐策略。 In the label system users can upload resources, and allows the use of any known as label text annotation on resources. Based on collabo-rative filtering recommendation technology development Microblogging systems, through accessing to Sina Weibo real user data experi-ment analysis, verifies the validity of the model and the related algorithm, according to the experiment, puts forward recommend strategies for the user.
作者 朱子江 刘寿强 ZHU Zi-jiang LIU Shou-qiang(Guangdong University of Foreign Studies South China Business College, Guangzhou 510545)
出处 《现代计算机》 2017年第5期7-10,共4页 Modern Computer
基金 广东省本科高校教学质量与教学改革工程项目(粤教高函[2015]133号)
关键词 微博 协同过滤 用户标签 Microblogging Collaborative Filtering User Tags
  • 相关文献

参考文献3

二级参考文献29

  • 1卢林兰,李明.用户ontology的构建及其在个性化检索中的应用[J].计算机应用,2006,26(11):2635-2638. 被引量:2
  • 2Claypool M,Le P,Waseda M,et al.Implicit Interest Indicators[C] //Proc.of ACM Intelligent User Interfaces Conference.New York,USA:ACM Press,2001.
  • 3Shen Lei,Zhou Yiming,Xu Chao,et al,Predicting User Behavior in E-commerce Based on Psychology Model[C] //Proc.of the 6thInternational Conference on Fuzzy Systems and Knowledge Discovery.Washington D.C.,USA:IEEE Computer Society,2009.
  • 4Glasman L R,Albarracin D.Forming Attitudes That Predict Future Behavior:A Mete-analysis of the Attitude-behavior Relation[J].Psychological Bulletin,2006,132(5):778-822.
  • 5Breese J, Heckerman D, Kadie C. Empirical analysis of predictive algorithms for collaborative filtering [ C ] // Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence (UAI). San Francisco,1998:43-52.
  • 6Das A, Datar M,Garg A. Google news personalization : Scalable online collaborative fihering[ C ] //Proceedings of the Sixth International World Wide Web Conference. Banff, Alberta, Canada,2007:272-280.
  • 7Linden G,Smith B,York J. Amazon. com recommendation: Item-to-item collaborative filtering[ J ]. IEEE Internet Computing, 2003:76-80.
  • 8Huang Z,Chen H,Zeng D. Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering [ J]. ACM Trans Inf Syst ,2004,22 ( 1 ) : 116-142.
  • 9O' Mahony M, Hurley N, Kushmerick N, et al. Collaborative recommendation: A robustness analysis [ J]. ACM Transaction on Internet Technology, 2004,4(4) :344-377.
  • 10Massa P, Avesani P. Trust-aware recommender systems [ C ]//Proceedings of RecSys' 07. Minneapolis, Minnesota, USA ,2007.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部