期刊文献+

水电富集电网大规模电站群发电调度系统设计及关键技术 被引量:4

System Design and Key Techniques for Large-Scale Power Plants Generation Dispatching of Power Grid with Rich Hydropower
下载PDF
导出
摘要 我国水电系统高速发展使得单一电网集中调度的水电站规模超过100座甚至200座,如此大规模水电系统调度亟需切实可行可用的应用系统支撑,以高效科学地完成电网日常发电调度分析和计划编制工作。以水电富集的云南电网为例,从工程实用性出发,通过系统性架构设计,采用时序数据库集群协同数据存储和管理技术、大规模发电调度约束条件分类批量处理技术、调度报表可视化定制技术,开发了水电富集电网大规模电站群发电调度系统,并于2016年4月在云南电网得到了成功应用(包含水电站150余座),自系统投运后,显著提高了发电调度结果的可行性和发电计划编制效率。 Rapid development of hydropower system in China makes the number of hydropower plants in a centralized dispatching fashion 100 or even 200. To complete daily analysis and planning of power generation scheduling of such a large-scale hydropower system scientifically and efficiently, a practical application system is needed. Taking the Yunnan Power Grid with rich hydropower as background, a power generation dispatching system for large-scale power stations has been developed for real engineering through system architecture design. This system uses temporal database cluster data storage and management technology, large-scale power generation scheduling constraints batch processing technology and visual customization techniques of operation reports. The system and its key techniques have been used successfully in April 2016 in Yunnan Power Grid. More than 150 hydropower plants participated in the system operations. The actual operation results show that the generation dispatching system can significantly improve the feasibility of power generation results and computational efficiency.
出处 《水电能源科学》 北大核心 2017年第4期72-76,212,共6页 Water Resources and Power
基金 国家自然科学基金项目(51579029) 中央高校基本科研业务费专项资金资助(DUT16QY30)
关键词 水电富集电网 水电站群 发电调度 关键技术 power grid with rich hydropower large-scale hydropower plants generation dispatching key techniques
  • 相关文献

参考文献1

二级参考文献8

  • 1杨俊杰,周建中,方仍存,钟建伟.MOPSO算法及其在水库优化调度中的应用[J].计算机工程,2007,33(18):249-250. 被引量:13
  • 2Mostaghim S, Teich J. Strategies for Finding GoodLocal Guides in Multi-objective Particle Swarm Op-timization ( MOPSO) [A], Proceedings of the 2003IEEE Swarm Intelligence Symposium[C]. Indianap-olis, USA, 2003:26-33.
  • 3Li Xiaodong. A Non-dominated Sorting ParticleSwarm Optimizer for Multi-objective Optimization[J]. Genetic and Evolutionary Computation,2003 :37-48.
  • 4Carlo R Raquel, Prospero C Naval Jr. An EffectiveUse of Crowding Distance in Multiobjective ParticleSwarm Optimization [A]. Proceedings of the 2005Conference on Genetic and Evolutionary Computa-tion[C]. Washington DC, USA,2005 :257-264.
  • 5M Janga Reddy, D Nagesh Kumar. Performance E-valuation of Elitist-mutated Multi-objective ParticleSwarm Optimization for Integrated Water ResourcesManagement [ J ]. Journal of Hydroinformatics,2009,11(1):79-88.
  • 6Michalewicz Z. Genetic Algorithms + Data Struc-tures =Evolution Programs (3rd. rev. and extendeded. )[M], New York:Springer-Verlag, 1996.
  • 7贠汝安,董增川,王好芳.基于NSGA2的水库多目标优化[J].山东大学学报(工学版),2010,40(6):124-128. 被引量:22
  • 8田娟,董贵明.基于多元线性回归的地下水开采可靠度模型[J].水电能源科学,2011,29(1):43-44. 被引量:5

共引文献9

同被引文献40

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部