期刊文献+

基于BP神经网络的超磁致作动器建模与控制

Modeling and Control of Giant Magnetostrictive Actuators Based on BP Neural Network
下载PDF
导出
摘要 超磁致作动器的迟滞非线性是其应用的一大障碍,对此基于BP神经网络建立超磁致作动器GMA的Hammerstein模型,在此模型基础上,设计前馈逆补偿与PID反馈控制相结合的复合控制策略。针对建模范围内的所有单频和复合频率的输入信号,控制器都能保证跟踪控制效果。通过实验实时跟踪的结果进一步验证建模和控制的效果。 The hysteresis nonlinearity of the GMA is a major obstacle in the application of such material in actuators. Establishes a Hammerstein model based on the BP neural network to model the hysteresis nonlinearity. Based on the model, designs a composite control strategy combining feed-forward compensation and PID feedback control. The controller ensures tracking control for all single and complex frequency input signals within the modeling range. Finally, the results of the real-time tracking experiment on GMA further validate the modeling and control results.
出处 《现代计算机》 2017年第6期11-14,27,共5页 Modern Computer
基金 国家自然科学基金重点项目(No.61433011)
关键词 迟滞非线性 超磁致作动器 BP神经网络 HAMMERSTEIN模型 Hysteresis Nonlinearity Giant Magnetostrictive Actuators BP Neural Network Hammerstein Model
  • 相关文献

参考文献3

二级参考文献30

  • 1党选举,谭永红.基于WIENER模型的压电陶瓷神经网络动态迟滞模型的研究[J].系统仿真学报,2005,17(11):2701-2703. 被引量:15
  • 2Oh J, Bernstein D S. Piecewise linear identification for the rate- independent and rate-dependent Duhem hysteresis models [ Jl. IEEE Transactions on Automatic Control,2007,52 (3) :576-582.
  • 3Yu Y,Xiao Z, Naganathan N G, et al. Dynamic Preisach model- ing of hysteresis for the piezoceramic actuator system [ J]. Mech- anism and Machine Theory ,2002,37 ( 1 ) :75-89.
  • 4Tan U X, Win T L, Shee C Y, et al. Rate-dependent hysteresis model of piezoelectric using singularity free Prandtl-Ishlinskii model [ C ]//Janeiph X. Proceedings of the 2007 IEEE Interna- tional Symposium on Computational Intelligence in Robotics and Automation. Jacksonville : lEEE ,2007 :356-361.
  • 5Janaideh M A, Rakheja S, Su C Y. Experimental characterization and modeling of rate-dependent hysteresis of a piezoeeramie ac- tuator [ J ]. Mechatronics ,2009,19 ( 5 ) : 656-670.
  • 6Oh J, Bernstein D S. Identification of rate-dependent hysteresis u- sing the semilinear Duhem model [ C ]// Perter J. Proceeding of the 2004 American Control Conference. Boston: IEEE, 2004: 4776-4781.
  • 7Lien J P, York A, Fang T, et al. Modeling piezoelectric actuators with hysteretic recurrent neural networks [ J]. Sensors and Actu- ators A : Physical ,2010,163 ( 2 ) :516-525.
  • 8Zhang X L,Tan Y H ,Su M Y ,et al. Neural networks based iden- tification and compensation of rate-dependent hysteresis in piezo- electric actuators [ ] ]. Physiea B : Condensed Matter,2010,405 (12) :2687-2693.
  • 9Chen X K, Hisayama T, Su C Y. Pseudo-inverse-based adaptive control for uncertain discrete time systems preceded by hysteresis [ J ]. Automatica ,2009,45 ( 2 ) :469-476.
  • 10Feng Y, Rabbath C A, Hong H, et al. Robust control for shape memory alloy micro-actuators based flap positioning system [C]//Gero P. Proceedings of the American Control Confer- ence, Baltimore : IEEE ,2010:4181-4186.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部